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Refactoring aims at improving the maintainability of source code without modifying its external behavior.
Previous works proposed approaches to recommend refactoring solutions to software developers. The gen-
eration of the recommended solutions is guided by metrics acting as proxy for maintainability (e.g., number
of code smells removed by the recommended solution). These approaches ignore the impact of the recom-
mended refactorings on other non-functional requirements, such as performance, energy consumption, etc.
Little is known about the impact of refactoring operations on non-functional requirements other than main-
tainability.

We aim to fill this gap by presenting the largest study to date to investigate the impact of refactoring
on software performance, in terms of execution time. We mined the change history of 20 systems that de-
fined performance benchmarks in their repositories, with the goal of identifying commits in which develop-
ers implemented refactoring operations impacting code components that are exercised by the performance
benchmarks. Through a quantitative and qualitative analysis, we show that refactoring operations can signif-
icantly impact the execution time. Indeed, none of the investigated refactoring types can be considered “safe”
in ensuring no performance regression. Refactoring types aimed at decomposing complex code entities (e.g.,
Extract Class/Interface, Extract Method) have higher chances of triggering performance degradation, sug-
gesting their careful consideration when refactoring performance-critical code.
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1 INTRODUCTION
Software systems are continuously changed to meet new requirements, fix defects, and enhance
existing features. A key point for sustainable software evolution is high-quality source code. In-
deed, several empirical studies have provided evidence that low code quality hinders maintenance
and evolution activities [21, 30]. Tools have been developed to recommend to developers how to
improve code quality via refactoring operations (i.e., refactoring recommender systems) [3].
Despite their benefits, most tools ignore the heterogeneity of modern software, and the different

priorities that non-functional requirements (e.g.,maintainability, performance, security) may have
in different contexts. For example, smartphones have limited battery life and require software
optimized to reduce energy consumption, while embedded systems often come with performance-
critical requirements specifying precise time windows in which a task must be executed.
State-of-the-art refactoring recommenders target the improvement of code quality from a nar-

row perspective, focusing on improving code readability or removing well-known anti-patterns
or code smells [4, 28, 45]. Basically, they aim at improving code maintainability without considering
the possible side effects that the recommended refactorings may have on other, maybe more impor-
tant, non-functional requirements. In other words, they do not consider the priority that different
non-functional requirements may have. For this reason, some researchers started investigating the
impact of “maintainability-driven” refactorings on other non-functional attributes.
Sahin et al. [35] showed that refactoring can change the amount of energy used by a software ap-

plication, while Demeyer [11] investigated the impact on performance of introducing virtual func-
tions in C++ code. These studies started laying the empirical foundations for building more sensi-
ble refactoring recommender systems, able to consider trade-offs between multiple non-functional
requirements when making recommendations. The only concrete example is the EARMO tool by
Morales et al. [29], able to support the refactoring of mobile apps by removing anti-patterns while
controlling for the energy efficiency of the app. There is still a lack of empirical knowledge about
the impact of refactoring on non-functional requirements.
We present a comprehensive study to investigate the impact of 16 different types of refactoring

on the execution time of 20 Java systems. The systems have been selected given their attention to
execution time, demonstrated by the presence of performance benchmarks in their code reposi-
tories. Using RefactoringMiner [46] we mined the subject systems for “refactoring commits”, i.e.,
commits which contain refactoring operations. Each refactoring commit is accompanied by the
code components (in our study, methods or classes) impacted by the refactoring. We manually in-
spected each commit to ensure that refactoring was its only goal. Through dynamic code analysis
we identified the code components executed by the performance benchmarks in each system, and
the refactoring operations that impacted them. Overall, we collected 82 commits implementing
167 refactoring operations impacting performance-relevant components. Each commit provides
several data points for our study, since refactorings implemented in the same commit can impact
different performance-relevant components and, thus, exercise different performance benchmarks.
The total number of data points involved in our study (i.e., pairs of refactoring actions, benchmarks)
is 1,598. The collection of this data required ∼476 machine days. Besides presenting quantitative
results showing the impact of (different types of) refactoring on execution time, we also qualita-
tively analyze cases inwhich refactoring had a negative impact on execution time, distilling lessons
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learned useful to (i) developers, for avoiding specific refactoring scenarios when performance is
key, and (ii) researchers, for developing performance-aware refactoring recommenders.
Our results show that refactoring can have a substantial impact on execution time, both in a pos-

itive and negative way. About 55% of the “refactoring commits” causes a statistically significant
performance change in at least one performance benchmark. Moreover, certain types of refactor-
ings are more prone to degrade execution time and should be carefully performed in performance-
critical systems. For example, Extract Class and Extract Method induce regressions, respectively,
in 16% and 12% of impacted performance benchmarks.

2 STUDY DESIGN
The goal of the study is to investigate the impact of refactoring operations on software perfor-
mance. Measuring performance encompasses multiple metrics, such as response time, utilization,
etc. In the context of this paper, we focus on execution time, intended as the time that a section of
code needs to be executed, without any concurrency and/or resource sharing with other software
running on the same platform.
The context is represented by 82 commits mined from 20 systems inwhich developers performed

a total of 167 refactoring operations impacting code components exercised by performance bench-
marks. The study answers the following research questions (RQs):
RQ1 To what extent do developers refactor performance-relevant code components?We want to un-

derstand if developers are reluctant to refactor performance-relevant parts of the system.
RQ2 What is the impact of refactoring on performance?We analyze the relationship between refac-

toring and performance, computing the percentage of cases in which refactoring improved,
deteriorated, or did not impact performance.

RQ3 What types of refactoring operations are more likely to impact performance?We investigate the
relationship between types of refactoring operations (e.g., Extract Method) and performance.
Besides quantitatively analyzing our findings, we report interesting examples in which the
refactoring had a negative impact on performance and we distill lessons learned useful for
both researchers and practitioners.

2.1 Data Collection
We describe the procedure we followed to collect the data needed for our RQs. Specifically, we
(i) selected Java open-source projects with performance benchmark suites, (ii) detected refactor-
ing operations to assess their performance impact, and (iii) ran benchmarks before and after the
refactoring operations were performed. We report in Fig. 1 an overview of the process we used to
collect our data.

2.1.1 Project Selection. We selected projects in which developers defined micro-benchmarks
for performance assessment. To do so, we queried GitHub for Java projects having a dependency
with JavaMicrobenchmarkingHarness (JMH)1, the de facto standard formicro-benchmarks.While
othermicro-benchmarking tools are available (e.g.,Caliper, Japex, or JUnitPerf), they are either less
popular than JMH, discontinued, or not executable in an automated way [25, 40].
We used the GitHub APIs to obtain the list of the 1,000 most recently indexed projects that

(i) used Maven as the dependency manager (i.e., they had at least a file named pom.xml), and
(ii) had an explicit dependency with org.openjdk.jmh.jmh-core, i.e., the core library required
to run JMH. We considered only projects having at least 100 stars, and 88 projects satisfied this
criterion. In addition to them, we considered two popular Java projects already used in a previous

1JMH, https://openjdk.java.net/projects/code-tools/jmh/
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Project Selection

Benchmark Execution Manual Validation

We executed the benchmarks
on such commits to check if
the refactoring operation
impacted also performance-
relevant code.

We manually discarded
tangled commits (i.e., impure
refactoring operations).

Command Definition

We manually defined the
commands to build and run
the benchmarks for 31
projects.

We manually defined the
commands to build and run
the benchmarks for  15
additional projects. 

We used Refactoring Miner
to detect possible refactoring
operations in the history of
the additional projects by
also considering the
branches. We focused on the
refactoring operations under-
represented after the first
phase.

We manually discarded
tangled commits (i.e., impure
refactoring operations) from
the new ones. We grouped
data points by refactoring
and we filtered out the
operations with less than 50
associated data points.

First Round

Second Round

Benchmark Execution Manual Validation & FilteringCommand Definition Refactoring Detection

31,416 refactorings

Datasets

We executed the benchmarks
on the new commits to check if
the refactoring operation
impacted also performance-
relevant code.

Refactoring Detection

We used Refactoring Miner
to detect possible refactoring
operations in the history of
the projects we selected.

GitHub

We took into account all the
projects hosted on GitHub.

QueryContext Selected Projects

We selected via the GitHub
APIs all the projects that met
the following criteria:
 • Written in Java
 • Used Maven 
 • Included a JMH dependency

We kept the 1,000 most recently
indexed projects.
We added the following projects:
 • RxJava 
 • Log4J2 

31 projects

1,534 data points17 projects 69 commits

RQ

1,156 data points18 projects 60 commits

3,343 commits1

RQ 2

RQ 3

1 2 3 1 2 3 1 2 3 2 3

3 3 3 3

Fig. 1. Overview of our data collection process. We report, on top of each step, the RQs for which it was done.
We report below summary information about the three datasets used to answer our research questions.

microbenchmark-related study [24], i.e., RxJava and Log4j2. They were not included in the set
of projects we initially selected because they were not among the 1,000 most recently indexed.
Additionally, RxJava uses Gradle instead of Maven as a build tool.
We manually analyzed the list of projects to find the commands that would build and run the

benchmark suite. In most of the cases build commands are of the form mvn -pl [jmhModule]
-am package, where [jmhModule] is the Maven module2 dedicated to performance benchmarks.
These commands usually build a jar file [benchmarks.jar] that contains performance bench-
marks suites along with all their dependencies (e.g., system code). Benchmarks suites can then be
executed through a run command, such as java -jar [benchmarks.jar]. To identify build and
run commands, we analyzed the GitHub pages of projects. In the simpler cases, commands are ex-
plicitly reported in READMEfiles (e.g., JCTools/JCTools3 and cantaloupe-project/cantaloupe4).
In other cases, we derived them through amanual analysis of pom.xmlfiles (e.g., apache/logging-log4j25

2Maven modules. https://bit.ly/3con0VI
3JCTools Benchmarks. https://bit.ly/3r6rmVC
4Cantaloupe. https://bit.ly/3lFllyf
5Apache Log4j 2, log4j-perf pom file. https://bit.ly/3r7zSDN
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and eclipse/jetty.project6).Wewere able to identifyworking commands and runnable bench-
marks for 31 projects (including RxJava and Log4j2).

2.1.2 Refactorings and Benchmarks Gathering. We used RefactoringMiner [46] to extract refac-
toring operations performed on the default branch of each project. RefactoringMiner is able to
detect 55 types of refactoring operations (e.g., Extract Method, Extract Class, etc.). Given the time-
consuming nature of our data collection, we discarded refactoring operations likely to have negli-
gible or no performance impact. Specifically, we did not consider seven refactoring types: Rename-
related refactoring operations (Rename Method, Rename Class, Rename Variable, Rename Param-
eter and Rename Attribute) and package-related refactoring operations (Change Package, Move
Class).
Given a git repository of a Java project, RefactoringMiner reports (i) the commits featuring

refactorings, (ii) the refactoring types, and (iii) the files and lines affected by the refactoring. We
collected 494,826 refactoring operations (of 48 different types) performed in 43,008 commits and 31
projects. We identified benchmarks suitable to evaluate their performance impact, by verifying for
each benchmark b in the project whether the code affected by refactoring operations is exercised
byb. We first derived, for each refactoring r performedwithin the commit c , the set of Javamethods
impacted by r , namelyMc

r . We used srcML [8] to parse the Java files affected by r and we identified
the set of methodsMc

r based on the impacted lines of code returned by RefactoringMiner.
For each benchmark b and for each commit c returned by RefactoringMiner, we derived the set

Mc
b of Java methods executed by b. We built system snapshots both before and after the commit c

is performed and ran dynamic analysis on the benchmarks to identify methods invoked by them. If
we were not able to build one of the two snapshots or to run the benchmark suite, we discarded the
commit c . We discarded 39,665 commits, while 3,343 are retained. The large number of discarded
commits can be explained by two main reasons. First, performance benchmark suites are usually
introduced at later stages of systems history. For example, we found that 22,938 out of the 39,665
discarded commits (∼58%) are removed because the project did not have yet a benchmark suite.
Second, several commits correspond to “unstable” states of the system, which makes unfeasible to
build the related snapshots and/or run benchmarks. We ran each benchmark b for 1 second and
recorded the methods invoked in the execution using Java Flight Recorder (JFR)7, to derive Mc

b .
This required ∼221 machine days, involving the profiled execution of more than 4M benchmarks
across 7,901 systems snapshots.
Finally, we intersected the list of methods affected by refactoring operations with those executed

by benchmarks to identify benchmarks suitable to assess the performance impact of refactoring
operations. We identified a set of 3,533 data points. Each data point is denoted by a tuple (p, c,b,R),
where p indicates the project, c the commit, b one of the project’s benchmarks, and R a subset of
refactoring operations performed in c . Each data point is such that every refactoring r ∈ Rmodifies
at least one method executed by b, i.e.,Mc

r ∩Mc
b ! ∅. Note that a refactoring operation may impact

multiple locations in the code. For example, an Extract Method refactoring typically involves a
source method and a target method. In our study, a benchmark b is considered suitable to evaluate
the impact of a refactoring r , if it executes at least one of the methods that are impacted by r . The
3,533 data points involved 201 commits, 521 refactoring operations (of 24 types) and 26 projects.
It is worth noting that a commit c may be a tangled commit [17], involving other code changes

(apart from refactorings) which can affect parts of code executed by b. Including tangled commits
might mislead the assessment of the impact on performance of refactoring operations. Therefore,

6Eclipse Jetty, jetty-jmh pom file. https://bit.ly/3lC2vYV
7JFR: https://tinyurl.com/y7yq8xc2
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we filtered out such cases by performing manual analysis on all the data points to verify whether
refactoring operations are the only code changes in the commit that affect the code executed by b.
We grouped the data points by commit, and randomly assigned them to five of the authors,

who manually analyzed the data points (p, c,b,R) assigned to them by inspecting the diff of the
commit c , the commit message accompanying c , the set of methods invoked by the benchmark
b (namely Mc

b ), and the discussions in the issue tracker related to c (if a link to the discussions
could be identified). Specifically, each author inspected the diff of any commit c on the GitHub
website with the help of a Google Chrome extension named Refactoring Aware Commit Review.
Such extension uses RefactoringMiner to visually augment the diff with refactoring information.
It is able to highlight the type of refactoring, where it occurred in the diff, andwhich parts of the diff
are identified as “Added code” (new code), “Same code” (code that was only moved), and “Method
call” (call to existing code that was moved). The goal of the manual analysis was to decide whether
b can be reliably used to evaluate the performance impact of the refactoring operations R (i.e.,
no other interfering changes were impacting the methods exercised by b besides the refactoring
operations). If an author classified a data point as relevant for our study (i.e., a pure refactoring
impacting b), it was double checked by another author. We only kept data points confirmed as
relevant for our study by two of the authors.
The dataset resulting from this process contains 1,534 data points involving 69 commits, 150

refactoring operations, and 16 refactoring types across 17 projects.

2.1.3 Benchmarks execution / Performance data collection. The performance comparison of dif-
ferent software versions in Java applications is far from trivial. There are a number of sources
of non-determinism, such as Just-In-Time (JIT) compilation and optimizations in the Java Virtual
Machine (JVM) [13]. We relied on steady state performance [13]: we repeated a benchmark execu-
tion for several iterations and collected measurements only after a steady state had been reached.
Indeed, first iterations (often called warm-up iterations) are subject to noise due to performance
variations in transient states, usually caused by class loading and JIT (re)-compilation. Hence,
in our experimental setup, measurements are only collected in iterations that are subsequent to
warm-up, namely measurement iterations. Different VM invocations running multiple benchmark
iterations may result in different steady-state performance data. For this reason, we also repeated
benchmark iterations multiple times on different VM invocations.
JMH allows to define the number of warm-up iterations, measurements iterations and VM in-

vocations directly in Java code or via command line arguments. We used the number of iterations
defined in the code by benchmark developers for warm-up and measurement iterations, and we
fixed the number of VM invocation to 10 (the JMH default) as done in previous studies [13, 23].
Given the previously described dataset, for each data point (p, c,b,R), we built system snapshots

for the project p both before and after the commit c was performed, and we executed b on both
snapshots, collecting two sets of measurements: Ebefore and Eafter . Both of them are matrices, where
Ei, j represents the observed execution time for j-th benchmark iteration on the i-th VM invoca-
tion. Execution of benchmarks for the 1,598 data points of our study required 79 machine days on
a dedicated machine.

Although all data points of our dataset are suitable to evaluate the performance impact of refac-
toring operations in general (see RQ2), many of them (∼19%) cannot be used to analyze the relation-
ship between types of refactoring operations and performance (RQ3), since they involve multiple
types of refactoring operations. We performed a second round of data collection specifically tar-
geting the identification of commits in which a single type of refactoring was performed, focusing
on data points (p, c,b,R) where all the refactoring operations r ∈ R are of the same type.
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To speed up the process, we removed 41 refactoring types from our data collection since, dur-
ing the data collection performed for RQ2, they had few related data points (<50). Also, we did
not collect additional data points concerning Extract Method since we already had sufficient data
points in our dataset (166 data points, 40 refactoring operations, 18 commits and 9 projects). As a
result, the second round of data collection focused on six types of refactoring: Extract Superclass,
Inline Variable, Extract Class, Move Method, Inline Method and Extract Interface.
For the supplementary data collection we mined refactorings (of the six targeted types) by

launching RefactoringMiner on all the branches of all 31 projects. We also derived commands
to run and build benchmarks for 15 additional projects gathered from [24]. Then, we derived
(p, c,b,R) data points, as described in Section 2.1.2, but discarded those having multiple types
of refactoring operations in R. Finally, performance measurements were collected for each data
point as described in Section 2.1.3. Overall, we found 64 additional data points, which involve 17
refactoring operations, spanning 13 commits and 6 projects. The profiled execution of benchmarks
to derive Mc

b sets lasted 176 machine days. The execution of the benchmarks took ∼11 machine
hours.
This additional dataset is only used to analyze the relationship between types of refactoring

operations and performance (RQ3), while it is neither used to evaluate the performance impact
of refactoring operations at coarse-grained level (RQ2), nor to evaluate the density of refactoring
operations in parts of the system known to be performance-relevant (RQ1). The rationale behind
this decision is that the additional data points collected for RQ3 are by construction only related
to six refactoring types, and ignore other refactoring operations performed by developers in the
change history of themined projects.When answering RQ1 and RQ2 it is important to use a dataset
that reflects the actual distribution of refactoring types in the versioning system of the subject
projects, something that would not happen by including the additional data points collected for
RQ3.
We collected 1,598 data points, 167 refactoring operations of 16 types, 82 commits, over 20

projects.

2.2 Data Analysis
Answering RQ2 and RQ3 requires to determine whether refactoring operations have an effect (ei-
ther positive or negative) on software performance. For this reason, we first describe the process
we used to determine, for a given data point (p, c,b,R), whether refactoring operations R cause
regression, improvement or unchanged performance in benchmark b.

2.2.1 Reliably detecting performance change. To determine whether refactoring operations lead
to non-negligible performance change, we used the approach proposed by Kalibera & Jones to
build confidence intervals for ratio of mean execution times [19, 20]. Compared to other perfor-
mance change detection techniques (e.g., hypothesis testing with Wilcoxon rank-sum combined
with effect sizes [13, 23], and change-detection through testing for overlapping confidence inter-
vals [13, 23]) the main benefit of the Kalibera & Jones technique is that, in addition to a reliable
performance-change detection, it provides a clear and rigorous account of the performance change
magnitude and of the uncertainty involved. For example, it can indicate that a system version is
slower (or faster) than another byX%±Y%with 95% confidence. To build the confidence interval we
used bootstrapping [10], with hierarchical random re-sampling [34] and replacement. Re-sampling
was applied on two levels [20]: VM invocations and iterations.
We ran 1,000 bootstrap iterations. At each iteration, new realizations of Ebef ore and Eaf ter mea-

surements were simulated and the relative performance change was computed. The simulation of
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the Êbef ore new realizations randomly selected a subset of real data from Ebef ore with replace-
ment. Similarly Êaf ter was simulated by randomly sampling Eaf ter . The two means (µbef ore and
µaf ter ) and the relative performance change (ρ) for simulated measurements were computed as
follows:

µbef ore =

!n
i=1

!m
j=1 Ê

bef ore
i, j

mn
and µaf ter =

!n
i=1

!m
j=1 Ê

af ter
i, j

mn
and ρ =

µaf ter − µbef ore

µbef ore

where n is the number of VM invocations,m the number of measurements iterations, j represents
the j-th (simulated) benchmark iteration and i the i-th (simulated) VM invocation.
After the termination of all iterations, we collected a set of simulated realizations of the relative

performance change P = {ρi | 1 ≤ i ≤ 1000} and estimated the 0.025 and 0.975 quantiles on
it, for a 95% confidence interval. Given a (p, c,b,R) data point, refactoring operations R lead to
a regression of b, if the lower limit of the confidence interval for relative performance change of
mean execution times is greater than 0 (i.e., b becomes slower after the commit c). Similarly, there
is an improvement in b if the upper limit of the confidence interval is less than 0 (i.e., b is faster
before the commit). Otherwise, we consider performance as unchanged.

2.2.2 RQ1: To what extent do developers refactor performance-relevant code components? Perfor-
mance benchmarks usually cover only parts of the system that are relevant to performance [22].
In our study, we consider a Java method as performance-relevant, if it is covered by at least one
benchmark. In other words, given a snapshot of the system c and a methodm, we considerm as
performance-relevant if it exists at least one benchmark b such that m ∈ Mc

b , i.e., m is executed
by b. On the other hand, a method is considered non-relevant in terms of performance if it is not
covered by any benchmark. To answer RQ1, we compared the density of refactoring operations in
performance-relevant code to the one in other parts of the system. We considered commits where
at least one refactoring was detected and for which we were able to collect methods executed
by benchmarks suites. Table 1 reports, for each project, the number of commits and refactoring
operations considered in this RQ. For each commit c we computed:

• PMc : the number of performance-relevant methods (i.e., methods executed by at least one
benchmark) subject to at least one refactoring.

• NPMc : the number of performance-relevant methods not subject to any refactoring opera-
tion.

• OMc : the number of methods in the project not executed by any benchmark and subject to
at least one refactoring.

• NOMc : the number ofmethods in the project not executed by any benchmark and not subject
to any refactoring.

Then, we computed, for every subject system, refactoring density in performance-relevant code
as the ratio of the number of performance-relevant methods subject to refactoring operations over
the total number performance-relevant methods in the entire system history:

RDPC =

!
c ∈C PMc!

c ∈C PMc + NPMc

where C is the set of commits under analysis for the subject system. Similarly, we measured
refactoring density in code not considered as performance-relevant:

RDNPC =

!
c ∈C OMc!

c ∈C OMc + NOMc

It is worth noting that we may count several times the same method if it appears in different
snapshots of the system. For example, given a system with two commits, c1 and c2, let us consider
a performance-relevant methodm subject to at least a refactoring operation in both c1 and c2.
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Project
Analyzed Commits

(total)
Refactorings

(total)
Methods
(average)

Performance-relevant Methods
(average)

alibaba/fastjson 34 85 1,249 21
apache/arrow 38 434 2,470 192
apache/camel 327 6,059 53,440 316
apache/commons-bcel 25 98 2,551 204
apache/logging-log4j2 405 1,700 2,161 300
arnaudroger/SimpleFlatMapper 80 1,291 3,148 170
cantaloupe-project/cantaloupe 204 1,297 1,767 121
debezium/debezium 82 417 2,843 107
easymock/objenesis 10 108 88 11
eclipse-ee4j/jersey 28 435 9,338 351
eclipse-vertx/vert.x 139 1,377 4,071 96
eclipse/jetty.project 392 2,218 12,400 86
eclipse/rdf4j 35 240 11,004 737
elastic/apm-agent-java 85 328 1,162 63
HdrHistogram/HdrHistogram 10 55 593 52
iotaledger/iri 29 329 1,220 50
JCTools/JCTools 75 740 870 95
jdbi/jdbi 31 107 1,282 170
jooby-project/jooby 59 425 1,546 7
kiegroup/drools 118 885 26,909 220
netty/netty 88 482 13,223 1,102
OpenFeign/feign 12 50 457 107
OpenHFT/Chronicle-Core 1 1 154 3
openzipkin/zipkin 15 165 1,698 249
panda-lang/panda 145 1,538 1,758 56
prestodb/presto 810 9,558 25,527 464
prometheus/client_java 6 13 264 35
protostuff/protostuff 11 93 1,994 35
pwm-project/pwm 24 560 4,551 6
ReactiveX/RxJava 16 225 3,915 943
zalando/logbook 9 103 513 99

Table 1. RQ1. Number of commits and refactoring operations used to evaluate density of refactoring op-
erations. The table also reports (for these commits) the average number of methods in the system and the
average number of methods covered by at least one performance benchmark.

Such a method is counted both in PMc1 and in PMc2 , i.e., it is counted twice in the formula of
RDPC . We do this because the same method can have different properties in different commits: it
could be counted as PMc1 in a snapshot and as NPMc2 /OMc2 /NOMc2 in another one.
Finally, we report, for systems with more than 50 commits, refactoring density in performance-

relevant code as well as refactoring density in other parts of the system via bar charts (Fig. 2). We
also perform Fisher’s exact test [39] to test whether the proportion of

!
c ∈C PMc/

!
c ∈C NPMc and!

c ∈C OMc/
!
c ∈C NOMc differ significantly.

In addition, we used the Odds Ratio (OR) [39] of the two proportions as effect size measure. An
OR of 1 indicates that refactoring performance-relevant code is equally likely as refactoring other
parts of the system. An OR greater than 1 indicates that refactoring operations are more likely
performed in code non-relevant from a performance perspective. An OR lower than 1 indicates
that refactorings are more likely performed in performance-relevant code.
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2.2.3 RQ2: What is the impact of refactoring on performance? Concerning RQ2, we need to as-
sess the impact of refactoring-related commits on software performance. In this RQ, we consider
the dataset gathered from the first round of data collection, which involves 1,534 data points, 69
commits, 150 refactoring operations (among 16 refactoring types) and 17 projects (see Table 2 for
an overview of the study-subjects projects).

Project Stars Commits Benchmarks

alibaba/fastjson 22,752 3,793 4
apache/arrow 6,684 8,065 47
apache/camel 3,524 49,254 23
apache/logging-log4j2 1,075 11,238 585
cantaloupe-project/cantaloupe 172 4,376 11
eclipse/rdf4j∗ 229 4,279 132
eclipse-vertx/vert.x 11,552 4,825 41
hazelcast/hazelcast∗∗ 4,079 30,670 144
HdrHistogram/HdrHistogram 1,786 740 75
iotaledger/iri 1,183 2,701 3
JCTools/JCTools 2,518 971 172
jgrapht/jgrapht∗∗ 1,802 3,185 91
kiegroup/drools 3,356 12,894 1
netty/netty 25,443 10,100 1,686
OpenFeign/feign∗ 6,471 857 13
prestodb/presto 11,454 18,431 1,534
protostuff/protostuff 1,550 1,580 31
raphw/byte-buddy∗∗ 3,904 5,383 39
ReactiveX/RxJava 43,867 5,810 1,302
zalando/logbook 733 1,626 20

Table 2. RQ2 & RQ3. Overview of projects considered in the evaluation of the performance impact of refac-
toring operations (i.e., for which at least one data point was discovered). Projects marked with (∗) are only
considered in RQ2, those marked with (∗∗) are only considered in RQ3.

Each refactoring-related commit has one of the following effects on the system performance:
• regression: the commit leads to performance regression of some benchmarks without im-
proving performance of any other benchmark;

• improvement: the commit leads to performance improvement of some benchmarks without
worsening performance of any other benchmark;

• mixed: the commit leads to performance regression of some benchmarks and improves the
performance of some other benchmark;

• unchanged: the commit keeps the benchmark execution time unmodified.
We report the percentages of refactoring-related commits falling in the four above categories via

bar charts in Fig. 3. We also report the percentages of data points showing regressions, improve-
ments or unchanged performance, to evaluate how code affected by refactoring operations is im-
pacted in terms of software performance. In order to provide a comprehensive view on the perfor-
mance impact of refactoring operations, we also report the magnitude of the performance change
for benchmarks showing regression and improvement. The magnitude of performance change, for
a given data point, is measured using the estimated mean relative performance change (i.e., the
center of confidence interval, see Section 2.2.1). We depict the distribution of these means via box
plots for both data points showing regressions and data points showing improvements in Fig. 5.
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2.2.4 RQ3: What types of refactoring operations are more likely to impact performance? To an-
swer RQ3, we need to isolate the effect of different refactoring types on software performance.
We selected from our dataset the data points (p, c,b,R) having all refactoring operations r ∈ R
of the same type. Types of refactoring with less than 50 associated data points are excluded from
this analysis. We analyzed 1,156 data points from 18 systems (see Table 2) involving 7 refactoring
types: Extract Method (166 data points), Extract Superclass (90), Inline Variable (65), Extract Class
(398), Move Method (184), Inline Method (66), and Extract Interface (187).
To analyze the impact on software performance of each refactoring type, we report via bar charts

the percentage of data points showing regression, improvement and unchanged performance (see
Fig. 6). We also report the magnitude of regressions and improvements for each type of refactoring
via box plots (see Figures 7 and 8). In the latter analysis we discarded types having negligible
impact both in terms of regression and improvement, i.e., those that have less than 5% associated
data points showing regressions or improvements. Finally, we discuss interesting examples related
to different types of refactoring operations.

2.2.5 Qualitative analysis. To better understand how and why refactoring operations impact
the performance, 5 of the authors manually inspected commits, issues and pull requests related to
cases in which refactoring had a negative impact on execution time. We report interesting cases
and discuss them along with RQ2 and RQ3 results.

2.3 Replication Package
We provide in our replication package [44] the complete data needed to replicate our findings.
In particular, we share the SHA code of the subject commits from each of the analyzed systems,
together with the refactoring operations detected in them and the results of the benchmarks ex-
ecution. We also provide the Python scripts used to generate the figures and tables reported in
Section 3.

3 RESULTS DISCUSSION
3.1 RQ1: To what extent do developers refactor performance-relevant code

components?
Fig. 2 reports the density of refactoring operations in performance relevant and non-performance
relevantmethods by software system. The darker bars represent refactoring density in performance-
relevant methods, i.e., the chance that a performance-relevant method is subject to refactoring.
Similarly, the lighter bars represent refactoring density in other methods of the system (i.e., non-
performance-relevant).
As previously explained, we group all systems for which we collected less than 50 commits

relevant for RQ1 in “others” (bottom of Fig. 2). The first observation that can be made by looking
at Fig. 2, is that no matter whether the method is performance relevant or not, the chance that it
is subject to refactoring operations is quite low (i.e., less than 1.5% — all bar charts are below the
0.015 on the x axis).
When comparing the refactoring density in performance-relevantmethodswith that of performance-

non-relevant methods, interesting trends can be observed. In only two projects (i.e., camel and
drools), developers performed more refactoring operations on performance-relevant methods.
However, according to the Fishers’s exact test, only in one project (i.e., camel) such a difference is
statistically significant (p-value < 0.05) with an OR of 0.37.
For all other projects, the refactoring density is higher in performance-non-relevant methods.

Among those, only two projects (i.e., jooby and vert.x) have a p-value larger than 0.05 (i.e., the
difference is not statistically significant). For all other projects, the refactoring density difference
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Fig. 2. RQ1. Density of refactoring operations in performance relevant methods and in other methods.
Fisher’s exact test results accompanied with Odds Ratio are also reported.

is statistically significant, with ORs varying from 1.47 to 11.19. This result indicates that in most
projects, the density of refactoring operations is higher in non-performance relevant methods.
We conjecture that the potential performance impact might be one of the factors which dis-

courage developers from refactoring performance-relevant methods. Validating such a conjecture
would require a dedicated empirical study surveying developers. While this is out of the scope of
this work, we proceed in the following RQs with investigating the impact on the execution time
of the refactoring operations that focused on performance-relevant methods.

3.2 RQ2: What is the impact of refactoring on performance?
Fig. 3 shows the impact of refactoring-related commits on execution time.

Fig. 3. RQ2. Percentages of refactoring-related commits leading to regression, improvement, mixed effect or
unchanged execution time.
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It is worth noting that multiple benchmarks can be involved in each commit. As it can be seen
from the chart, more than 40% of refactoring-related commits do not result in any performance
change. In the rest of the cases, a large percent of the commits (>30%) has a mixed effect on perfor-
mance, in that on the same commit some benchmarks induce performance regression, whereas some
other ones induce improvement. Around 15% of the commits only lead to performance improvement
and slightly more than 10% cause only performance regression. This is not surprising as code af-
fected by refactoring operations can be exercised in different ways by benchmarks. For example,
each benchmark may involve the execution of a different set of performance-relevant methods or
the execution of the same methods with different inputs, which can lead to diverse performance
behaviors. From these results, we can observe that a large percent of the commits (>55%) (i.e., the
ones that are not classified as unchanged), causes a statistically significant performance change
(either positive or negative) on methods of the system that are considered relevant for perfor-
mance. Specifically, when considering the negative impact on performance due to refactorings,
more than 40% of the commits causes performance regression in at least one benchmark. This is
particularly relevant considering that performance issues are usually discovered through specific
tests and inputs [18, 27, 43].
By inspecting how the performance is impacted in each benchmark affected by refactoring-

related commits (Fig. 4), we can find that inmore than 75% of cases, the performance is not changed.

Fig. 4. RQ2. Percentages of benchmarks affected by refactoring-related commits (i.e., data points) showing
regressions, improvements or unchanged execution time.

Neither performance regression nor performance improvement is common, and they both take
place in around 10% of the benchmarks. This suggests that, similarly to common performance is-
sues [18], performance changes introduced by refactoring operations require specific benchmarks
to be exposed [27, 43]. That is, even when the commit causes a performance change in some of
the benchmarks, there are often other benchmarks for which performance remains unchanged.
We further looked into the extent of performance regression or improvement (Fig. 5), and we

can find that the medians of relative performance changes are below 5% for both performance
improvement and regression.
About 50% of regressions involve performance changes between 2% and 6%, and, similarly, 50%

of improvements ranges between 1% and 6%. Moreover, it is rare that refactoring-related commits
can lead to a performance change of more than 15%. This is expected considering that we are
investigating code changes performed in a single code commits. The magnitude of these changes,
which may appear negligible, is still relevant as benchmarks measure performance at method level
[22–24]. Indeed, even a relatively small performance change at method level may potentially lead
to a huge performance deviation at system level.
For example, in the pull request 86148 of netty/nettywe found that a code refactoring was not

accepted as it causes “non-negligible” performance regression (i.e., up to 5%) in two benchmarks.
This confirms that performance changes due to refactoring operations (see Fig. 4) may be relevant
for performance.

8https://github.com/netty/netty/pull/8614
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Fig. 5. RQ2. Relative performance change of benchmarks due to refactoring operations. The darker box plot
reports results for benchmarks showing regression, while the lighter box plot reports results for benchmarks
showing improvement.

The pull request 8614, mentioned above, also highlights interesting aspects about the relation-
ships between refactoring activities and software performance. The goal of this pull request is to
achieve “less code duplication” and “better encapsulation” by removing duplicated logic from two
classes with the help of a common helper class, and it involves several refactoring operations such
as Extract Class, Change Parameter Type, and Move Method. After the performance regressions
were detected in the two benchmarks, the developer revised the code changes and eliminated the
regression, and finally the pull request was merged. Nevertheless, while our benchmarks results
show no-regression on the benchmarks used by developers (which is inline with developer ex-
pectations), we did find significant performance regressions (up to 3 times) on other benchmarks
not considered by developers. This may suggest that comprehensively analyzing the performance
impact of refactoring operations is not trivial, and even experienced developers might consider only a
part of it.
Another interesting fact is that although some projects attach great importance to the perfor-

mance, they merge refactoring-related commits without verifying their performance impact. For
example, two commits (49ac2da9 and f537eda10) performing “Extract Superclass” operationswere
proposed in the same pull request 18511 for the project JCTools/JCTools, in order to “homog-
enize atomic queues” (i.e., making the atomic queue class AtomicArrayQueue as similar to the
unsafe queue ArrayQueue as possible). While the author expressed concerns about performance
(“Performance impact of this is unverified”), the pull request was merged without any discussion.
Nevertheless, we found that these commits have non-negligible impact on performance (up to
11%). We conjecture that the long execution time required to run performance benchmark suites
(e.g.,more than two hours for JCTools/JCTools [22]) may prevent developers from verifying the
performance impact of refactoring operations. The adoption of state-of-the art techniques [24] to
reduce benchmarks execution time without sacrificing result quality may be beneficial for this
problem. Also, similarly to what has been done to predict the impact of a refactoring operation on
quality metrics before applying it [6], it might be beneficial to design techniques able to predict
the impact of refactoring operations on performance.
Finally, since our analyses have been conducted at commit-level granularity and a commit can

involve multiple refactoring operations, we also investigated whether a correlation exists between
9http://bit.ly/3oRLfza
10http://bit.ly/34aqgjd
11https://github.com/JCTools/JCTools/pull/185
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the number of refactoring operations in a commit and themagnitude of the change in performance.
We computed the Spearman rank correlation coefficient, which reported a lack of correlation be-
tween the number of refactorings in the commits and performance change (ρ = 0.118). This is
somehow expected when assessing the impact of refactoring commits grouping together different
types of refactoring, as done in RQ2. Indeed, some of them may bring performance improvements,
while other regressions, thus not showing a clear trend.
Summing up, most refactoring-related commits lead to performance change, with these changes

usually affecting only a subset of the involved benchmarks. Moreover, we found that a large per-
cent of commits (>55%) leads to regression in at least one benchmark. Performance regressions and
improvements due to refactoring-related commits have relatively similar frequencies, and they can
bring a performance change up to 12% inmost of the cases. Nevertheless, these relatively small per-
formance changesmay still be relevant for system-level performance, especially in case of methods
involved in “core features”. Finally, our results indicate that the analysis of the performance impact
of refactoring activities may be non trivial even for experienced developers, as these changes can
have diverse (and often mixed) effects on performance-relevant methods. This problem is further
exacerbated by the long execution time required to run benchmark suites, which may prevent
developers from verifying the performance impact of their refactoring operations.

3.3 RQ3: What types of refactoring operations are more likely to impact performance?
Fig. 6 reports the percentage of benchmarks in which the performance is positively or negatively
impacted by each type of refactoring operation considered in RQ3.

Fig. 6. RQ3. Performance impact of different types of refactoring on the associated benchmarks (i.e., data
points). Percentages of benchmarks showing regression or improvement are reported for each refactoring
type.

The chart reveals that all of the refactoring types can lead to both improved and regressed perfor-
mance. Overall, Extract Class/Interface/Method/Superclass refactoring operations are more likely
to impact performance than Inline Method/Variable and Move Method. When performing Extract
Class/Interface/Method and Inline Method the performance is more likely to degrade, while when
performing Inline Variable and Move Method, there is a higher chance of performance improve-
ment. Extract Superclass leads to similar amounts of performance regression and improvement.
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The Extract Class refactoring is the more closely related to performance regression, with more
than 16% of impacting benchmarks showing such a trend. Moreover, the magnitude of regres-
sion introduced by Extract Class is higher when compared to other types of refactorings (50% of
regressions lead to a performance change between 2% and 7%, see Fig. 7).

Fig. 7. RQ3. Relative performance change of benchmarks showing regressions due to different types of refac-
toring operations.

Indeed, Extract Class refactoring may induce a higher number of allocated objects which may
regress the performance of the system. For example, the description of the issue LOG4J2-129512 of
apache/logging-log4j2 states “it is not always obvious that some code creates objects, so it is easy
for regressions to creep in duringmaintenance code changes”. Indeed, according to apache/logging-log4j2
developers13 “garbage collection (GC) pauses are a common cause of latency spikes” and the alloca-
tion of more temporary objects “contributes to pressure on the garbage collector and increases the
frequency with which GC pauses occur”. Therefore, when Extract Class refactoring causes a higher
number of allocated objects, it may increase the frequency of GC pauses, thereby leading to perfor-
mance regression. Another interesting fact is that even the same Extract Class operation can have
significantly different performance impact on slightly different versions of software. For example,
when we inspected a case of non-negligible performance regression (i.e., performance reduced
8% and 20% for two benchmarks, respectively) caused by Extract Class in the commit 90d82d214
of apache/logging-log4j2, we found the same refactoring operation was performed in another
branch of the same project15(9ad360316). However, this refactoring only causes regression of up
to 5% for seven different benchmarks. This finding suggests that even the same Extract Class op-
eration can have different impact on performance under different contexts.
Extract Interface, Extract Superclass and Extract Method also have higher chances to lead to

performance regressions compared to other refactorings (respectively, ∼15%, ∼14% and ∼12% of
the involved benchmarks show regression). While the former two cause less intense regressions,
Extract Method provides regressions with similar magnitudes to those observed for Extract Class
(see Fig. 7). Although improvements due to Extract Method are less frequent than regressions, they
lead to higher performance changes (50% of them range from 2% to 14%, see Fig. 8).
12https://issues.apache.org/jira/browse/LOG4J2-1295
13http://bit.ly/3apTONJ
14http://bit.ly/2WnBOv3
15Note that, according to our manual analysis, this is the only case in which the same commit was performed in multiple
branches of the system.
16http://bit.ly/38cVpnd
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Fig. 8. RQ3. Relative performance change of benchmarks due to different types of refactoring operations.

This behavior relies on the relationship between Extract Method and specific runtime optimiza-
tions employed by the JVM, as smaller methods have more chances to be inlined during runtime
optimization of a Just-In-Time (JIT) compiler. Extract Method refactoring is common practice to
achieve automatic inlining at runtime. It is often difficult to identify such optimization opportuni-
ties as they require specific conditions. To become a candidate for inlining, a method must satisfy
at least one of two conditions: i) its bytecode size must be within 35 bytes (by default); or ii) it must
be called more often than a pre-defined threshold (10,000 invocations by default) and its bytecode
size must be within 325 bytes (by default) [32]. Usual benchmarks configurations are ineffective to
identify such optimization opportunities. In commit ceb0a6217 of apache/logging-log4j2which
“refactors a large method into smaller methods to enable inlining”, improvement is expected in ex-
ecution time as these smaller methods have more chances to be inlined. Our benchmarks results
only displayed performance regressions. This kind of optimizations may not manifest when eval-
uating performance through default benchmarking configurations, as they are triggered only in
specific scenarios (the authors mentioned in the commit message that “the new code is all inlined
after ∼7000 invocations”). We envision that future research may leverage static characteristics of
the code (e.g., size of methods) combined with its dynamic behavior (e.g., the number method in-
vocations during benchmarking) to design recommenders which automatically suggest potential
optimization opportunities through Extract Method refactoring.
For the other types of refactoring, Inline Variable has a relatively high chance to lead to perfor-

mance improvement (14% of the benchmarks with a performance change ranging from 3% and 6%
in 50% of the cases), while Move Method and Inline Method have lower chances to bring perfor-
mance change. Moreover, the performance change caused by the Move Method has never reached
5%.
As already done for RQ2, also in this case we investigate a possible correlation between the

number of refactoring operations in a commit and themagnitude of the change in performance.We
did this analysis by refactoring type. Extract Method and Extract Class were the two showing the
strongest Spearman rank correlation coefficient which, however, still showed a poor correlation
between number of refactorings in a commit and performance change (ρ = 0.213 for Extract
Method and ρ = 0.108 for Extract Class).
In summary, the impact of refactoring on performance varies from type to type. No refactoring

type guarantees the absence of performance regression. Extract Class and Extract Method have

17http://bit.ly/3gXtiN2
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a higher chance of causing larger performance regression than other types of refactoring. When
Extract Method causes performance improvement, it leads to larger performance changes.

4 THREATS TO VALIDITY
Construct validity The main threats to the construct validity of our study are related to the
process we adopted to measure performance variations caused by refactoring.
To mitigate the risk of unstable performance benchmark results, we perform, within each VM

invocation, multiple warmup and measurement iterations accordingly to the JMH configuration
defined by software developers, and we fix the number of VM invocations to 10 as done in previous
studies [13, 23]. We did not use developer custom configurations for VM invocations, since a pre-
vious study [24] showed that developers often rely on a single VM invocation, which is considered
a bad practice as inter-JVM-variability is common [13, 19, 22]. Using configurations with higher
number of iterations or VM invocationsmay lead tomore stable results. Prior work [13] suggests to
dynamically stop measurement iterations when certain quality criteria are met (e.g., coefficient of
variation < 0.02). Nevertheless, we found this approach impractical for our study due to extremely
long execution times. Software compilation may also induce performance variability [31] due to
the non-deterministic nature of Java compilation strategies [14, 19]. Such variability can be mit-
igated through compiler replay [14, 19] to avoid bias introduced by compilation. However, these
approaches can dramatically increase the time needed for benchmarking as they add another level
of repetition, which makes them impractical for our study. To reliably detect performance change,
while dealing with performance variability, we followed best practices [5, 19, 23, 24]. We estimate
the confidence interval for relative performance change with bootstrap [10, 20] by employing hi-
erarchical random resampling with replacement [34], and we detect performance change if there
is statistically significant difference, i.e., the confidence interval does not contain 0.
Imprecisions in the detected refactorings could also have affected our results. However, we used

a highly precise state-of-the-art tool (RefactoringMiner [46]), reported to have a 98% precision and
87% recall. Also, while it is possible that we missed relevant data points for our study due to false
negative (i.e., refactoring-related commits missed by RefactoringMiner), we are confident about
the absence of false positives in our dataset, since we manually inspected all the commits subject
of our study to exclude those introducing, besides the detected refactorings, other code changes.
Conclusion validity. Wherever possible we used appropriate statistical procedures with p-

value and effect size measures to test the significance of the differences and their magnitude.
Internal validity. Those are mainly related to a missing causation link between refactorings

and changes in performance as assessed by the benchmarks, and to possible confounding fac-
tors that may influence such a relationship. We controlled for tangled commits, ensuring that the
commits considered in our study only focused on refactoring-related changes. However, (i) in our
observational study we do not claim causation, and (ii) at least, we complemented the quantitative
analysis with a qualitative one, which helped in better understanding the influence of refactoring
on performance.
External validity. While the number of systems and the subject commits is limited as com-

pared to those of MSR studies, it is worth nothing that the data collection procedure for our study
required 15 months of work. Moreover, the number of systems we consider is larger than recent
studies investigating software performance research questions (see e.g., [12, 22, 24, 33]), while the
numbers of commits and performance tests involved are similar. Still, the generalizability of our
findings is limited to the analyzed refactoring types and systems.
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5 RELATEDWORK
Given the goal of our study, we discuss the literature related to studies investigating (i) software
performance in the context of code evolution, and (ii) the impact of refactoring operations on
quality attributes.

5.1 Empirical Studies relating Performance to Software Evolution
Performance analysis of running software systems has been tackled by different perspectives in
the last few years (e.g., through models at runtime [2, 15]). However, given the goal of our paper,
we focus here on the domain of empirical analyses, possibly supported by benchmark techniques.
Han et al. [16] have introduced StackMine, a tool exploiting stack traces to allow performance

debugging of a considerable amount of data on Windows-based systems. Our approach works
at higher level of abstraction because, on the basis of traces generated through JMH microbench-
marks, we aim at identifying the (beneficial or degrading) effects of refactoring actions on software
performance.
Sandoval et al. [36–38] have analyzed performance regression of different versions of applica-

tions in an object-oriented language and development environment named Pharo18. They have
analyzed 19 different projects and a total of 1,125 different versions. The main differences between
our approach and the one in [36–38] are: first, the context (i.e., Java systems vs Pharo); second, we
have exploited JMH as micro-benchmarking library, instead of building an in-house benchmark
suite. Furthermore, we have analyzed 20 different open source projects by generating 1,598 data
points.
Daly et al. [9] have presented mechanisms for detecting performance regression in an indus-

trial project, i.e., MongoDB. They automatically detect change-points variability to identify the
commit causing a specific performance degradation event. Then, those labeled points have been
manually checked to discard false positives. Our process starts from commits labeled with specific
refactoring actions and, then, look at their effect on performance. Also, our study spans different
projects.
Laaber et al. [24] have focused their study on reducing the required execution time of micro-

benchmarking tests through a dynamic reconfiguration of JMH. They have defined three ways to
detect when a test reaches the performance peak (i.e., the steady-state) and then they apply their
reconfigurations. In our study, it would be interesting to use the approach proposed by Laaber
et al. with the aim of reducing the duration of our tests. However, we have decided to exploit the
default JMH configurations (i.e., the ones associated to the different commits) to be as compliant
as possible with developers intents.
Chen et al. [7] have studied the influence of code changes on performance degradation in the

context of the Python programming language. They have exploited unit tests, along with a pro-
filer, to extract performance data. Our study design differs from the one by Chen et al., since we
target Java programming language and exploit micro-benchmarks, instead of unit tests, to extract
performance data. Also, we focus on a specific type of code changes (i.e., refactoring actions).
Reichelt et al. [33] have compared unit tests to discover performance regression between ver-

sions of nine long-lived Java open-source projects. The use such a corpus to infer performance
variations through code changes. We rely on JMH instead of unit tests, because the former avoids
JVM optimizations that may produce unreliable performance data.

18Pharo project: http://pharo.org
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Ding et al. [12] have analyzed whether unit tests can be aimed at assessing performance. In
particular, they have targeted two systems (i.e., Cassandra19 and Hadoop20), and they have ex-
tracted functional tests that can be performance-related by digging developers message backlogs.
We have instead dug the GitHub corpus in order to extract projects equipped with JMH tests, and
we have investigated the correlation between refactoring actions and performance degradation in
20 systems.
Table 3 lists the sizes of corpora of related works that empirically assess software performance.

To avoid second-guessing, we only report such data for studies explicitly providing information
about the number of subject projects and benchmarks.

Reference Projects Benchmarks

Sandoval et al. [36–38] 19 1,125
Laaber et al. [24] 10 2,164
Chen et al. [7] 8 1,268
Reichelt et al. [33] 9 105

Our study 20 1,598

Table 3. Comparison among corpora sizes.

To the best of our knowledge, the magnitude of our study is on par with, if not larger than,
previous works empirically analyzing changes in performance caused by source code changes.

5.2 On the Impact of Refactoring on Code Quality Attributes
In recent years, many researchers have focused on how refactorings might impact the quality of
software projects.
Moser et al. [30] conducted a case study on a project developed in an agile and close-to-industrial

environment. The authors examined the code quality change after refactorings, with complexity
and coupling metrics. They found that refactorings lead to simpler and less coupled code.
Szőke et al. [41] analyzed five software systems and measured the quality change over refactor-

ings with a probabilistic quality model. With the 200 identified refactoring commits, the authors
found that while single refactoring does not necessarily increase the software quality, its increase
in local components and globally can be more evident when refactorings are applied in blocks.
Tavares et al. [42] applied 80 refactorings automatically generated by JDeodorant on seven open-

source Java systems and investigated how refactoring impacts code smells. Their results indicate
that while some code smells can be eliminated by refactoring as expected, there are also cases that
refactorings introduce new bad smells.
Abid et al. [1] examined the impact of refactorings on both security and other quality attributes

(i.e., reusability, flexibility, understandability, functionality, extendibility, and effectiveness). By an-
alyzing 30 open-source software projects, they found that while refactorings help to improve other
quality attributes, the software tends to become less secure. This negative correlation need to be
taken into account before refactoring software systems.
Lin et al. [26] inspected 1,448 refactoring operations from 619 Java projects to understandwhether

refactorings lead to more natural code, namely whether the source code becomes more repetitive
and predictable. Their results indicate that this assumption does not always hold, and the impact
on the code naturalness varies among different types of refactorings.
19Cassandra: https://cassandra.apache.org/
20Hadoop: https://hadoop.apache.org/
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Sahin et al. [35] conducted an empirical study, involving 197 applications of six commonly-used
refactorings, to investigate how refactorings affect the energy usage. Their results show that all
the considered refactorings in the study can potentially impact the energy consumption, with a
magnitude ranging from -4.6% to 7.5%. Verdecchia et al. [47] also looked into the same topic. They
applied automatic refactoring on five different types of code smells in three open-source Java
projects and collected energy consumption in a controlled environment. As a result, they found
that in one project, refactoring significantly impacted the energy consumption.
To the best of our knowledge, not many studies have investigated the impact of refactoring

operations on the performance of software systems. The most relevant work to ours is the study
conducted by Demeyer [11], which inspected how a specific type of refactoring (i.e., replacing con-
ditionals by virtual function calls) impacts the performance of C++ programs. Their results show
that this type of refactorings often leads to faster performance compared to their non-refactored
counterparts. While this study is highly relevant to software performance, it only focuses on a
specific type of refactoring operation.

6 CONCLUSION
We presented an empirical study aimed at investigating the impact of refactoring operations on ex-
ecution time. To the best of our knowledge, this is the first work analyzing a wide set of refactoring
types from the “performance perspective”. As for any performance-related study, the collection of
the data needed to answer our research questions posed major challenges and required hundreds
of machine days.
The achieved results show that the impact of refactoring on execution time varies depending

on the refactoring type, with none of them being 100% “safe” in ensuring that there is no perfor-
mance regression. Some refactoring types, such as Extract Class and Extract Method, can result in
substantial performance regression and, as such, should be carefully considered when refactoring
performance-critical parts of a system. It is important to highlight that, due to the expensive data
collection process behind our study, such results are based on a limited number of data points
(e.g., a total of 82 commits from 20 projects). Additional investigations are needed to strength the
generalizability of our findings. Still, our work discloses the potential side-effects of refactoring on
execution time and has implications for both practitioners and researchers. For the former, it is im-
portant to be aware of the possible performance regressions caused by refactoring operations. The
recommendation here is not to avoid refactoring performance-critical code but to properly handle
it. First, developers should ensure that the code target of the refactoring is properly covered by
performance benchmarks. In this way a “performance regression testing” can be performed after
refactoring to assess if and how much the implemented changes degraded performance. Second,
assuming that a cost is observed in terms of performance, a non-trivial cost-benefit analysis must
be run to decide whether to revert the refactoring. For example, if the refactored code is well-
known to cause maintainability issues (e.g., it is difficult to comprehend, leading to frequent bug
introduction), developers may accept some performance regression to improve code maintainabil-
ity. On the researchers’ side, we envision research aimed at designing (i) approaches to predict the
impact on performance of planned refactoring operations before they are actually implemented
in the system, and (ii) sensible refactoring recommender systems, able to consider trade-offs be-
tween multiple non-functional requirements when making recommendations. Our future agenda
is driven by these two research directions.
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