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Abstract—The successful operation of a modern company relies
on the dependability of its software infrastructure. However,
ensuring a robust and dependable software infrastructure can be
challenging, as software applications are subject to continuous
updates that can introduce bugs and performance regressions.
To mitigate this challenge, many companies use Application
Performance Management (APM) tools to monitor their digital
devices and identify potential issues that could affect business
operability. However, the large volume and heterogeneity of the
data collected by these tools can make it difficult to effectively
analyze and exploit the rich source of information available. In
this paper, we propose RADig-X, a tool designed to support the
identification and analysis of digital experience issues. RADig-X
leverages AI algorithms and a ranking heuristic to: (i) detect
anomalies in runtime metrics collected by APM tools, (ii) assess
the relevance of these anomalies based on their impact on the
overall IT infrastructure, and (iii) rank problematic software
updates that may be the root cause of relevant anomalies.
We report on the adoption of RADig-X by a large company
that monitors over 30,000 digital devices around the world.
Our results demonstrate that RADig-X is able to improve the
effectiveness of the identification process of digital experience
issues, by enabling to identify and address potential anomalies
that could impact business operations. RADig-X is currently used
in production within the case company to support the diagnosis
and problem resolution of digital experience issues.

Index Terms—AIOps, Anomaly Detection, Application Perfor-
mance Management

I. INTRODUCTION

Modern enterprises heavily rely on digital devices, such
as desktop computers, to carry out their business operations.
Therefore, a dependable IT infrastructure is essential to ensure
seamless business continuity. However, avoiding significant
software problems that can hinder business activities presents
an ongoing challenge for companies. Due to the current fast-
to-market trend [1], modern software applications are contin-
uously updated to meet new requirements and to experiment
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new features, and the time reserved for quality assurance
activities during software development is often limited [1], [2].
In that, each software update poses a potential source of issues
that can directly impact business digital devices. For instance,
recent studies suggest that seemingly non-invasive software
changes, such as maintenance activities, can unexpectedly
compromise software quality [3], [4].

To deal with this context, companies often rely on Applica-
tion Performance Monitoring (APM) tools [5] to monitor the
execution behavior of software applications (e.g., Dynatrace1,
Datadog2, Aternity3). These tools continuously record metrics
related to different aspects of software execution in the field
(e.g., fault rates, logging, execution times), and enable the
adoption of quick remediation actions when relevant software
failures occur [5]. Despite the utility of these tools, the
effective exploitation of collected metrics for diagnosis and
resolution of relevant software issues remains challenging.
Software metrics are known to be subject to severe fluctu-
ations (e.g., due to varying workloads [6] and/or execution
environments [7], [8]), and it is often difficult to determine to
what extent these fluctuations are “normal” or symptoms of
actual anomalies. Furthermore, anomalies are not uncommon
in practice, and it can be challenging to assess the significance
of an anomaly, thus to determine which ones should undergo
root cause analysis.

In this paper, we present RADig-X (Regression Analysis of
User Digital Experience), a tool to support the identification
and analysis of digital experience issues, and we report on
our experience in the adoption of this tool in a large real-
world company, namely Micron, which monitors more than
30,000 digital devices around the world. RADig-X leverages
a combination of AI algorithms and a ranking heuristic to:
(i) determine actual anomalies in runtime metrics gathered
from APM tools, (ii) prioritize the relevance of anomalies

1Dynatrace. https://www.dynatrace.com
2Datadog. https://www.datadoghq.com
3Aternity. https://www.aternity.com
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according to their impact on the overall IT infrastructure,
and (iii) rank problematic software updates that are correlated
with relevant anomalies. Through an empirical evaluation
using real-world monitoring data, we demonstrate that RADig-
X achieves a 94% improvement in F1-score for anomaly
detection compared to the current practice employed within
the company. Furthermore, our results suggest that RADig-
X has potential in identifying software updates that exhibit a
notable correlation with software application crashes. RADig-
X is currently deployed within Micron to support the diagnosis
and problem resolution of digital experience issues. To date,
RADig-X has facilitated the detection of multiple regressions,
including two specific ones that had substantial impacts on the
digital user experience. Since the adoption of RADig-X, there
has been a 14.66% enhancement in the index measuring the
quality of digital experiences within the company.

The rest of the article is structured as follows. Section II
presents the industry context of this work. Section III describes
our formative study and the main challenges that we aim to
tackle. Section IV outlines the main components of RADig-
X. In Section V, we present our research questions along
with experimental design and results. Section VI discusses the
insights from the usage in practice of RADig-X. Section VII
presents the threats to validity of our study, Section VIII
presents the related work, and Section IX concludes this paper.

II. CONTEXT OF THIS WORK

Micron is a leader company in memory solutions manufac-
turing. As of 2023, it is the 4th largest semiconductor company
in the world, with a presence in 17 countries and a workforce
of ∼49,000 employees.

Micron employees make an extensive use of digital devices
(e.g., desktop computers) to carry out their business activities.
However, these devices are subject to frequent software up-
dates that make them susceptible to unexpected performance
degradations and/or software failures. These software issues
can have a severe impact on employee productivity, such
as causing a slowdown in business activities and potential
economic effects for the company.

To mitigate the impact of these issues, Micron closely
monitors more than 30.000 business devices using a popular
APM tool4. A dedicated monitoring team is in charge of
promptly identifying software issues that can have a significant
impact on employee productivity. Each of the 30,000+ devices
is equipped with a APM tool agent that records a variety of
runtime metrics, such as response time of user actions, boot
times, software crashes and resource usage, thus totaling to
several gigabytes of data per day. These metrics can then
be accessed either directly by the monitoring team through
visual dashboards, or programmatically through REST APIs
to observe the state of each device. Due to the vast volume
and variety of metrics collected by APM tool, it is often
difficult to gather a comprehensive picture of the health status

4For privacy reasons, we name as APM tool the one used here, and as IDX
the adopted digital experience quality index.

of the company IT infrastructure. To this aim, Micron relies
on the APM tool’s IDX that summarizes, in a unique metric,
the observed quality (the higher IDX the better quality) of
the employee’s digital experience. IDX provides two key
benefits: (i) it offers a unique metric that acts as a proxy
measure for the health status of the entire IT infrastructure,
and (ii) it allows for comparison with IDX of other similar
companies through a dedicated dashboard, thereby providing
useful reference baselines. IDX can be configured to suit
the specific business needs of a company, for example by
assigning larger weight to the runtime metric of a particular
software application. IDX calculation considers as input a
subset of runtime metrics collected by the APM tool agent
on the devices; based on these, a local IDX value (IDX-
subscore) devoted to each precise runtime metric considered is
calculated. These local IDX values are subsequently combined
according to the configuration established by the company to
arrive at a unique final IDX score (global IDX score). However,
it can be challenging to understand how fluctuations in a
specific runtime metric (e.g., number of crashes in a particular
software application) will ultimately affect IDX. Indeed, the
process of deriving the IDX sub-scores starting from the raw
metrics is often obscure for the company, since its computation
also considers the metrics associated to other APM tool
customers, which might not be available to the company.
In addition, IDX has a fixed refresh rate, and therefore it
is not directly accessible in real-time by the company. This
can be a problem when, for example, a (buggy) software
update is deployed on a significant number of devices, and
the monitoring team needs to promptly detect any IDX drops
to prevent negative effects on employee operability.

The monitoring team continuously monitors both raw met-
rics and IDX to spot anomalies through APM tool dashboards.
Nonetheless, the frequency of software updates on employee
devices poses a persistent threat that can prevent employee
operability at any given moment. Software updates in Micron
devices can be triggered directly by the employees or forced
by the company. The latter are typically scheduled upfront
and deployed on a large number of devices to maintain
enterprise software up-to-date across all the company devices
(e.g., due to security reasons). In such cases, potentially
problematic software updates can be deployed over a large
amount of devices, with significant consequences on the entire
IT infrastructure. To prevent updates from causing failures on
systems, the mass release phase is usually preceded by the
test deployment phase, where a subset of devices is randomly
chosen to assess the potential impact of the updates. Despite
these mitigation strategies, Micron often struggles to avoid
side-effects due to software updates, especially due to the scale
of the problem. About 70% of devices contain more than a
thousand installed applications, and software change events
per month are in the order of millions, including installations,
upgrades and removals.

Figure 1 presents the digital experience monitoring process
adopted in Micron. APM tool agents deployed on employee
devices continuously record in a data storage software/system
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runtime metrics, and software changes (i.e., software instal-
lations, updates and removals). Then, the monitoring team
accesses the recorded data mainly through APM tool dash-
boards, which provide a collection of facilities to query and
visualize software runtime metrics and software changes data.
In addition, the monitoring team has developed a series of
custom applications, on top of the APM tool APIs, to enable
automated queries and analyses, such as automating metric
checks to trigger an alert if the number of software crashes
increases over a threshold.

The monitoring team is in charge of three main activities
within Micron: (i) problem identification , (ii) root cause
analysis, and (iii) issue reporting. Problem identification en-
tails understanding if there are significant anomalies in the
monitored runtime metrics that can negatively impact em-
ployee productivity. Root cause analysis involves extracting
the potential causes of a manifested runtime metric anomaly
(e.g., buggy software updates or installations), while issue
reporting consists in reporting the identified anomalies and the
associated possible causes to the team in charge of managing
the entire IT infrastructure.

III. FORMATIVE STUDY

We conducted an initial formative study to understand the
challenges faced by the monitoring team. The first author
spent the first two months of the study on-site, together
with the monitoring team, to directly experience the activities
and challenges faced by the team. In the first two weeks,
daily training meetings were held on the main context-related
concerns, such as: team organization, used monitoring tools,
IT infrastructure and support applications. Afterwards, the first
author actively participated in the daily activities carried out
by the monitoring team, such as problems identification of
ongoing IDX regressions and root cause analysis, for a total
training period of two months. At the end of this phase, a

discussion with all the co-authors has been held in order to
extract the main concerns.

We distilled three main challenges: (i) anomaly detection,
(ii) digital experience impact evaluation and (iii) root cause
analysis.

Anomaly detection. The monitoring activity of devices in-
volves ongoing tracking of application quality metrics, e.g.,
application crashes and wait times, which results in time
series of metric values concerning applications that are spread
across a wide range of devices. Digital experience regressions
occur when the system behavior is changing unexpectedly.
Hence, some of metric time series may present anomalies that
differentiate the running state from the past usual patterns.
In that, a major challenge consists in detecting anomalies
within metric time series, by distinguishing between seasonal
fluctuations in recorded metrics and true anomalies. Examples
of seasonal fluctuations are due to device running hours. For
instance, less application crashes can be due to many idle or
powered-off devices that are not running any application (e.g.,
for different working hours in different world time zones).
These kinds of fluctuations do not impact employees user
experience, so they should not be reported.

Current internal practices mostly rely on human-driven
analysis, which can be expensive given the large number of
metrics that affect IDX.

Anomaly impact evaluation. Industry processes lead to fre-
quently evolving changes to infrastructure and software that
can bring anomalous situations due to bugs and conflicts.
However, even if every anomaly represents a potential impact
to digital experience, it might not have a relevant effect on
employees. The anomalies of interest are in fact those that
affect a large number of devices, thus impacting a wide number
of users, and those that persist over time, consequently having
a continuous impact on IDX. In this perspective, it is necessary
to quantify the digital experience impact as soon as anomalies
are identified, and to prioritize the ones that most negatively
affect the IDX score. In this way, anomalies can be classified
according to their IDX impact.

Since IDX is a third-party index with a fixed refresh rate,
it is not possible to immediately know the IDX score from
raw metrics recorded values in a critical situation, so the
impact assessment task of an anomaly is a major challenge.
In addition, a related concern consists in estimating IDX
impact of anomalies in near future, thus allowing for proactive
corrective actions, before regressions can have devastating
impacts.

Root cause analysis. A third challenge consists in analyzing
the causes of the identified anomalies threatening the em-
ployees digital experience. Software changes (i.e., updates,
installations and removals) are millions per month. This makes
the identification of changes responsible for an anomaly an
expensive task that requires wide analysis. Indeed, each of the
30,000+ devices has its own configuration involving thousands
of installed applications, so that each one triggers specific
software updates and different potential conflicts can come out.



In addition, the instant when a software change is performed
on a specific application may vary from device to device. In
that, the monitoring team deals with a huge amount of data
to analyze. Currently, internal root cause analysis practices
rely on expensive and manual human-based heuristics and
statistical analysis.

IV. PROPOSED SOLUTION

Figure 2 presents an overview of RADig-X, a tool for regres-
sion analysis of employees digital experience, which includes
three major components, each supporting a targeted challenge:
(i) Anomaly Detection, (ii) Anomaly Impact Estimation and
(iii) Root Cause Analysis.
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Fig. 2: Overview of RADig-X

The first component of RADig-X leverages machine learning
models aiming to detect anomalies. Thereafter, linear regres-
sors are used in the second component for estimating the dig-
ital experience impact of each identified anomaly of runtime
metrics. The third component supports Root Cause Analysis
(RCA) activity by analyzing, through heuristic ranking, the
impact of software updates on the digital experience. Across
the three components, the tool employs an underlying model
maintenance layer that is responsible for updating employed
models with incoming data.

The whole tool lays on a external Data Ingestion layer
that contains all employees devices monitored data, which is
continuously populated by a monitoring agent.

RADig-X offers a clear separation of concerns in terms
of challenges addressed by individual components separately.
Indeed, in the daily practice, RADig-X components can be
used either sequentially, to automate the whole process, or
individually to support a single challenge (e.g., root cause
analysis).

In the following we describe, in detail, how our solution
addresses each of the detected challenges.

A. Anomaly detection
We employ time series ML forecasting algorithms (e.g.,

LSTM) to model runtime metric fluctuations patterns based
on the historical trends, as represented in Figure 2 (ML Trend
Estimation). Specifically, one model has been trained for each
time series of monitored runtime metric. In this way, we allow
RADig-X to learn from the underlying seasonal patterns of
each monitored runtime metric, thereby enabling the prediction
of expected future values within a predefined forecasting
horizon. In order to perform anomaly detection, predictions for
expected runtime metric values are continuously generated by
RADig-X, and the residuals between the expected and actual
values are assessed to quantify the deviation from the expected
time series behavior.
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Fig. 3: Real example of plots included in RADig-X visual
anomaly detection dashboard.

These deviations can be assessed in two different ways:
(i) using a predefined threshold T , which enables automated
anomaly detection, and (ii) using a dedicated dashboard that
allows the monitoring team to visually compare the actual
runtime metric trend with the expected one. Figure 3 shows an
example of such visual analysis. On the left side, a solid line
shows the real (standardized) number of crashes observed in
two weeks, while a dashed line represents the predictions. The
plot on the right side of the figure instead reports the deviation
between the actual and predicted values. This example shows
that in day 10 there is a potentially impactful detour, and the
monitoring team can decide whether to deem it as an anomaly
based on their domain expertise.

B. Anomaly Impact Estimation
Our second challenge consists in pointing out anomalies

with a relevant impact on digital experience. The capability
to have a IDX-estimation strategy permits to assess the digital
experience impact of runtime metrics anomalies without wait-
ing for next IDX refresh, as motivated in Section III. In order
to point out relevant anomalies, RADig-X aims to estimate the
IDX subscore of each considered metric starting from runtime
metric values. In that, the IDX Subscore Estimation component
of Figure 2 relies on linear regressors fit with the past observed
data using raw metric values as input and their associated IDX
subscores as target values. This technique allows to provide
an estimation of IDX, while ignoring the details behind its
calculation.

As reported in Section II, global IDX score is based
on a subset of runtime metrics, each one associated with



a IDX subscore. Taking into account the fact that global
IDX derives from several runtime metrics distinct in their
characteristics, our solution estimates IDX subscore of each
individual metric separately, and then performs the aggregation
through a weighted average according to the IDX configuration
established by the company. Indeed, each metric may have
different units of measurement (e.g., time units, percentage,
etc.) and may be influenced by different factors (e.g., device
performance, user behavior, etc.). In that, RADig-X aims to
estimate the impact of runtime metric anomalies on digital ex-
perience, by means of the global IDX. The Anomaly Filtering
component, represented in Fig. 2, uses the impact estimation
to filter out negligible anomalies (with a very low impact).

Furthermore, when used in tandem with the ML models
presented in the previous section, this approach can also be
used to predict future estimations of the global IDX, and
estimate the future impact on digital experience of current
runtime metric fluctuations.

C. Root Cause Analysis (RCA)

The huge amount of data collected from monitored devices
makes the root cause analysis (currently conducted manually)
a labour-intensive and time-consuming task. Our proposed
solution implements a heuristic ranking, by automating a
before-and-after analytical process on all devices. This step is
represented in Figure 2 with the Heuristic Ranking component.
This process is aimed at automatically narrowing down the
many possible causes to a few changes, with respective quan-
titative and qualitative impact measures. A major challenge
consists of managing devices with heterogeneous software
configurations, which execute updates in different instants
determined by the user.

Figure 4 shows a high-level description of RADig-X Root
Cause Analysis (RCA). The analysis starts from the anomaly
report generated by the previous tasks containing: (i) the time
interval in which an anomaly has been observed, (ii) the
software application that is crashing, and (iii) all the details
related to the devices that are affected. RADig-X extracts all
the data related to software changes and software crashes
collected by the agent installed on the devices, basing on the
time interval in the anomaly report. In particular, software
changes data are extracted as a dataset, in which each row
corresponds to a software change event and specifies: device
ID, software name, software version and timestamp. Similarly,
software crashes data are collected as a tabular dataset, where
each row identifies a software crash recorded by the agent, and
it specifies: application name, device ID and crash timestamp.
We also include a filtering step to possibly remove non-
relevant data (e.g., changes concerning very few devices).

Upon completion, the tool executes a loop running through
all the unique software changes contained in the software
changes dataset. Within each iteration (i.e., each unique soft-
ware change), a nested loop is performed over all the devices
that received that specific change. For each device, RADig-X
splits the crashes dataset of that device in two parts, namely:
before SC subset and after SC subset. Statistical metrics are

then carried out, for each software change, by comparing
before/after events. Finally, generated data are sorted out on a
parameter that summarizes the global impact of the software
changes on all the devices.

V. EMPIRICAL EVALUATION

We independently evaluated the effectiveness of each
RADig-X sub-component (i.e., anomaly detection, anomaly im-
pact estimation and RCA), by aiming to address the following
research questions:

• RQ1: How effective is RADig-X in detecting anomalies?
• RQ2: How effective is RADig-X in assessing the rele-

vance of anomalies in terms of employees digital experi-
ence?

• RQ3: How effective is RADig-X in supporting root cause
analysis?

The results of our empirical evaluation are reported in
the following subsections, each one dedicated to a specific
research question.

A. RQ1: How effective is RADig-X in detecting anomalies?

To address this research question, we first assess the feasi-
bility of different machine learning models in predicting time
series of runtime metrics. Then, we evaluate the effectiveness
of these ML models for anomaly detection, through a com-
parison with the current internal practice.

To select RADig-X ML model for performing anomaly
detection, we tested the effectiveness of two widely-used Re-
current Neural Networks (RNN) models, namely bidirectional
Long Short-Term Memory (LSTM) [9], [10] and Gated Recur-
rent Unit (GRU) [11], employing Random Forest Regressor
(RFR) [12] and Linear Regression (LR) as baseline models
for comparison, since they have been widely employed for
time series forecasting [13]–[17]. To construct the evalua-
tion dataset the monitoring team has suggested eight metrics
concerning application crashes with higher weights in IDX
configuration, and so expectedly most impactful on IDX in
case of regressions. We extracted more than one year of data
with a sampling interval of one day for each metric, generating
eight time series with 400 values. We then formulated time
series forecasting task as a supervised learning regression
problem. The dataset has been crafted creating consecutive
shifted windows, each with a width of 28 time steps, for each
time series. For each window, the first 14 time steps are used as
input and the last 14 values as output. We adopted a multiple-
output strategy for addressing the multi-step-ahead problem,
thus directly predicting all the forecasting horizon [10], [18].
For each windowed dataset that has been generated, first 80%
of windows are used for training (of which 10% for validation
set) and the last 20% as testing set.

In order to identify the most effective ML approach for our
dataset, we leveraged two widely used forecasting accuracy
measures: (i) Mean Absolute Error (MAE) and (ii) Root Mean
Squared Error (RMSE) [15], [19], [20] over the testing set.
We have implemented LSTM and GRU using Keras. Linear
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Regression and Random Forest Regressor models have been
implemented by using scikit-learn.

The effectiveness of RADig-X anomaly detection has been
evaluated over the testing set of the same time series. For sake
of such comparison, we have implemented an automated script
to replicate the current anomaly detection practice used within
the company. Specifically, current internal practice estimates
future metric values computing the mean value based on the
specific weekday past values. For instance, expected metric
value for the next Monday is computed averaging values
recorded on previous Mondays, considering a time window
defined by taking into account retention policies on monitored
data. Daily anomaly detection is then performed by comparing
the expected values and the real observed ones with threshold-
based criteria.

We computed Precision, Recall and F1-score using as
ground-truth actual anomalies occurred on the selected time
series, as reported by the monitoring team.

RADig-X and current internal practice anomaly detection are
both performed by comparing the difference among expected
and observed values against a threshold. To fairly compare
them we used the same threshold, setting it equal to the
standard deviation σ of the input sub-sequence: T = σ. We
chose this conservative threshold based on the feedbacks of
the monitoring team. Indeed, the monitoring team tends to
consider false negatives more dangerous than false positives.
In this context, an anomaly that goes unnoticed can be more
damaging than a false positive, which instead might be double
checked by the team and ignored afterwards.

Results. Figures 5 and 6 depict the RMSE and MAE
distributions for each ML approach. Given the presence of
outliers in error distributions and the variety of applications
considered, we preferred to use the median values to compare
the approaches. We noticed that RNN models exhibited fa-
vorable MAE distributions, with lower mean and median with
respect to LR and RFR. Specifically, in Fig. 6 we observed a
median of 0.071 for LSTM and 0.072 for GRU, while LR
and RFR have shown median values of 0.083 and 0.093,
respectively. By looking at Fig. 5, we again noticed that all
RNN models exhibited a lower RMSE median compared to
the baselines. Namely, RMSE median of 0.131 and 0.121 have
been observed for LSTM and GRU, versus 0.137 of LR and
0.139 of RFR. In summary, both MAE and RMSE medians
pertaining to GRU model are the lowest ones. In addition, the

GRU error distribution is less spread out, thus suggesting a
more reliable prediction. Based on these quantitative results,
we have chosen LSTM and GRU models for the implementa-
tion of RADig-X, and therefore for the subsequent evaluation
step.

In the second step of RQ1 evaluation, we compared RADig-
X anomaly detection effectiveness against current internal
practices. The evaluation has been performed over the same
eight time series, by using anomalies manually labeled by the
monitoring team as ground-truth. Results of anomaly detection
evaluation are shown in Figure 7, where we present the
distribution of Recall, Precision and F1-score, as grouped by
approach. Specifically, we compared the following approaches:
(i) current internal practice, (ii) LSTM-based RADig-X and
(iii) GRU-based RADig-X. By examining the F1-score box-
plots, we observed highest mean and median when using
LSTM model, with a mean of 0.437 and a median of 0.408.
Instead, GRU exhibited a median of 0.39 and mean of 0.30.
With the current internal practice, we noticed a median F1-
score value of 0.225 and a mean of 0.331. Thus, the median
values show an advantage in using LSTM. Interestingly, even
though the GRU model has shown a lower error during
the previous model performance evaluation, the quality of
RADig-X anomaly detection is better when using LSTM,
which highlights a median F1-score improvement of 94%
compared to the current internal approach. By examining
precision and recall separately, LSTM-based RADig-X has
shown an improvement of 40% in median recall compared
with the current internal approach, suggesting that RADig-
X detected considerably more true anomalies. In addition, a
larger improvement in median precision (100% increasing)
is also achieved, meaning that LSTM-based RADig-X signifi-
cantly improved the number of actual anomalies among those
identified. By considering the improvements presented above,
we clearly observed that the proposed strategy improves the
accuracy of the anomaly detection technique.

B. RQ2: How effective is RADig-X in assessing the relevance
of anomalies in terms of employees digital experience?

Second RQ aims to address the effectiveness of IDX impact
estimation of the identified anomalies.

Our strategy leverages linear regressors with a supervised
learning approach, by using runtime metrics data as input and
the corresponding IDX subscore as output, in order to estimate
a global IDX value. We have considered all the runtime
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metrics accounted for IDX calculation (that are more than 60).
Specifically, we built a dedicated linear regression model for
each runtime metric, and performed a separate training for
each one. We implemented linear regressors using scikit-learn
in python. Each regressor has been trained using time series of
runtime metric weekly values as input, and the corresponding
IDX subscores time series as output. Linear regressors aim
to predict IDX subscore of a specific runtime metric, starting
from the metric weekly value. For each metric, the regressor
has been fit using the first 80% of time series as input and the
last 20% for testing. We used the Root Mean Squared Error
(RMSE), rescaled on a 0-100 scale using the minimum and
maximum values of IDX, to evaluate the estimation quality
of each runtime metric. In order to test the effectiveness
of the global estimation, we have then aggregated all the
metric IDX subscores to obtain the global IDX estimation.
This outcome has been compared against the real global IDX
score observed in the testing set. Predicted IDX subscores
are aggregated according to the weights that the company
assigned to each runtime metric in IDX configuration. Based

on company requirements, a global IDX estimation percentage
error less than 5% is acceptable.

Summing up, RQ2 evaluation has been conducted in two
steps: (i) measuring linear regressors error to assess that the
error distribution is acceptable across all the metrics, and (ii)
evaluating the effectiveness of the aggregation technique of
estimated scores by comparing the aggregated predicted score
with the real global IDX score.

Results. Figure 8 shows the distribution of all the regressors
absolute errors. We highlight that Q1 is very close to 0 and Q3
is less than 5, i.e., 75% of regressors have an error lower than
5. Hence, the majority of regressors have a very small error.
However, the plot also shows several outliers, thus suggesting
that some components are too complicated to be modeled with
a simple linear regressor.

Table I shows the global IDX estimation percentage error in
the last 7 weeks. Global estimation error is always less than
2%, thus meaning a suitable estimation technique based on
company requirements.
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Fig. 8: RMSE distribution in IDX subscore estimation over all
considered runtime metrics using linear regressors.

Testing Week IDX Percentage Error

Week #1 0.33 %
Week #2 0.08 %
Week #3 0.54 %
Week #4 1.36 %
Week #5 0.39 %
Week #6 0.12 %
Week #7 0.79 %

TABLE I: Percentage error measured on weekly global IDX
estimation.

C. RQ3: How effective is RADig-X in supporting root cause
analysis?

The RCA strategy has been empirically evaluated by ap-
plying it in real-world scenarios, specifically in four cases
where significant application crash anomalies occurred. The



data we used for the evaluation consist, for each scenario, in
application crashes and software change events, occurred in
each device, which have been collected by APM tool agent.
For each analysis, we have generated a ranking of software
changes in a decreasing order of impact. Software modules and
application names have been anonymized for privacy reasons.
The naming convention is the following: software updates are
indicated with the prefix SU , while applications that have
experienced a crash regression are denoted by the prefix CR .
Software update modules that pertain to the same application
share the first letter after the prefix (e.g., SU A.1 and SU A.2
in Tab. II are both related to the application A).

As for ranking metrics, we considered for each software
change: (i) Crashes Difference, representing the relative differ-
ence between the total amount of crashes observed before and
after the software change occurred on all the affected devices;
(ii) Devices, which indicates the percentage of devices affected
by the change; (iii) Crashes Delta Avg, calculated by averaging
the difference between the crashes observed before and after
the change of each affected device. The sorting of software
changes ranking is performed in descending order based on
Crashes Delta Avg value.

Results. In the first scenario, an application that we name as
CR X has experienced an increase of +450% in the number of
crashes. In Table II, we reported the head of the ranking gener-
ated by RADig-X RCA. The top-ranked updates clearly depict
major crashes difference increases (by more than +1,000%),
all related to the same application SU A.

Other two scenarios concern a common application that
we name as CR Y. One of them has manifested a notable
crash regression in CR Y, whereas in the other one there
was a subsequent decrease in the number of crashes for
the same application. The results are shown in Tables III
(crash increasing phase) and IV (crash decreasing phase),
respectively. By looking at Crashes Difference and Crashes
Delta Avg column of Table III, we can easily infer that SU G.1
and SU G.2 updates result in a much stronger impact than
other ones. Similarly, Table IV shows that the first row has a
more significant crash delta average value (-22.18%) than the
following ones. By looking at the software updates names,
we find that these updates actually concern different modules
of the same application update (SU G), thus suggesting that
SU G.1 and SU G.2 updates of Tab. III have caused regres-
sions that might have been fixed by SU G.6 update in Tab. IV.

In the fourth scenario, which involved another crash re-
gression, the heuristic ranking did not report any meaningful
results.

In summary, in three out of the four scenarios the tool has
highlighted a subset of software changes that may have caused
the crashes regression. However, after consulting updates sup-
port team, we discovered that only in the first scenario (Table
II) the software change that had really caused the regression
has been highlighted. In contrast, the regressions in the other
cases were attributed to particular workload distributions in the
industrial setting and not to specific software changes. Hence,
the approach has proved its usefulness only in the first case.

One critical issue that has been found is the distortion of results
on some software changes that occur simultaneously with the
actually responsible one. Since the approach counts events
before and after updates, if a group of changes is made at the
same time then the consequences of one change belonging
to the group could bias the results of the whole group. On
the basis of the above consideration, we can conclude that
the approach succeeds in readily filtering out the subset of
software changes that impacted the devices most significantly,
but the identified changes may not be the real culprits since
crashes regression might be mainly due to some other reasons.

Software Update Crashes Difference Devices Crashes Delta Avg

SU A.1 + 1205.27 % 58.59 % 5.49 %
SU A.2 + 1205.27 % 58.59 % 5.49 %
SU A.3 + 1209.29 % 58.62 % 5.49 %
SU A.4 + 1205.27 % 58.59 % 5.49 %
SU A.5 + 1206.36 % 58.59 % 5.49 %
SU A.6 + 1201.99 % 58.57 % 5.48 %
SU A.7 + 1206.78 % 58.43 % 5.46 %
SU D.1 + 345.99 % 80.20 % 4.03 %
SU E.1 + 266.42 % 100.00 % 3.45 %
SU E.2 + 233.08 % 89.00 % 3.37 %
SU E.3 + 146.55 % 61.28 % 3.02 %
SU F.1 + 30.28 % 95.79 % 1.01 %
...

TABLE II: RADig-X root cause analysis evaluation: ranking
for CR X crash increase.

Software Update Crashes Difference Devices Crashes Delta Avg

SU G.1 + 189.60 % 74.87 % 52.10 %
SU G.2 + 199.23 % 98.04 % 39.11 %
SU G.3 + 40.81 % 69.41 % 8.34 %
SU G.4 + 27.23 % 72.19 % 4.97 %
SU G.5 + 27.11 % 72.61 % 4.96 %
...

TABLE III: RADig-X root cause analysis evaluation: software
updates ranking scenario 2 (CR Y crash increase).

Software Update Crashes Difference Devices Crashes Delta Avg

SU G.6 - 51.24 % 92.43 % - 22.18 %
SU G.7 - 20.92 % 76.80 % - 5.78 %
SU G.8 - 17.28 % 95.71 % - 4.63 %
...

TABLE IV: RADig-X root cause analysis evaluation: software
updates ranking scenario 3 (CR Y crash decrease).

VI. INSIGHTS FROM PRACTICE

RADig-X has been tested and deployed in Micron, used
daily by monitoring team analysts. We report two success
cases collected thus far from the adoption of the tool within the
company, focusing on how RADig-X assisted the monitoring
team in managing runtime metrics anomalies that have affected
IDX.

In either cases, a first anomalous increasing phase in appli-
cation daily crashes occurred followed by a later decreasing
phase. Thanks to the visual dashboard provided by RADig-
X (that includes plots like the ones shown in Figure 3), the



monitoring team can double check and analyze the anomaly,
observing more details about the deviation between expected
and observed values to perform in-depth analyses. Both cases
start with an anomaly reported by RADig-X, which is im-
mediately analyzed by the monitoring team via the visual
dashboard. Right away, by leveraging RADig-X, the real-
time impact of the anomaly on IDX is estimated (without
waiting for the next IDX refresh), thus allowing the monitoring
team to immediately know the impact of the anomaly on the
digital experience. Then, the extraction of crashes and software
changes data collected during the anomaly-affected week is
performed to generate the heuristic ranking with RADig-X,
thus filtering the most impactful software changes.

We summarized quantitative data of two cases in Tables
V and VI, showing the observed deviation calculated as the
absolute percentage error between the collected actual values
and the predicted ones in the metric time series. The error is
computed on both the sum and the mean of the metric daily
values. In addition, we report the anomaly percentage impact
on the IDX metric subscore that incurred the anomaly.

Case 1: Results concerning the first case are presented in table
V. RADig-X anomaly detection dashboard showed a difference
of more than 60% between the expected and observed crashes
of a running application APP15. Such immediate recognition
of the anomaly allowed for preliminary investigations to figure
out the underlying concern. By comparing the total amount
of APP1 crash events occurred in all the devices in the
week before the anomaly with respect to the week including
the anomaly, the monitoring team noticed a 400% increase.
By more closely looking at the devices that are plagued by
the anomaly, it turned out that the problem was distributed
on almost all the devices of the company, thus impacting
the digital experience of many employees. Indeed, RADig-
X estimated an impact to APP1 IDX subscore of 25.23%.
Thereafter, RADig-X RCA ranking highlighted an impactful
software change SC1. By summing all the application crashes
observed in each individual device after this software change,
it has been found that the number of APP1 crashes after
SC1 was 16 times the number of crashes before the change
(considering a one week length window before and after
the change). The APP1 anomaly and the likely cause SC1
have been immediately reported to support groups to fix the
issue. After three months, the RADig-X signaled another APP1
anomaly concerning a decreasing trend in the amount of daily
crashes of the same application. The gap between predicted
and observed was about 35%. Even though this situation was
supposed to increase IDX, by exploiting RADig-X the team
noticed that the increase was not enough to raise the APP1
IDX subscore. RADig-X RCA ranking has shown a potentially
critical software change SC2 (which was a module of APP1
itself). By comparing the sum of daily crashes occurred in
all the devices before and after SC2 (considering a one week
period), the number of APP1 crashes decreased by 30.2%.

5For privacy reasons, we cannot disclose the name of the actual applications
and software changes.

Observed deviation (%)

Sum Mean IDX Subscore
Regression Phase 64.51 % 64.50 % - 25.23 %
Improvement Phase 35.99 % 36.03 % 0 %

TABLE V: RADig-X practical usage case 1 results.

Case 2: The second situation is reported in Table VI. By
using the tool, the monitoring team identified an anomaly in
APP2 daily application crashes owing to an unusual growth
pattern for observed crashes. The average gap between daily
expected and observed values was over 200%. Then, RADig-
X estimated a IDX subscore impact of almost 50%, thus
allowing the monitoring team to be aware in real-time of the
impact of the anomaly on the employees digital experience.
RADig-X RCA, in this case, didn’t highlight any specifically
related impacting software update. After two months, RADig-X
detected a decreasing in daily APP2 crashes, thus signaling the
anomaly to the monitoring team. On average, the percentage
error among expected and observed daily crashes decreased by
11.11%. By using RADig-X, the monitoring team immediately
estimated an improvement in APP2 IDX subscore of 69.37%.
In these two situations we observed the real utility of the tool
in a practical context. Indeed, the monitoring team confirmed
that these two situations consistently impacted the employees
digital experience. Thanks to RADig-X, it was possible to: (i)
immediately identify runtime metrics anomalies, (ii) estimate
in real-time the digital experience impact without waiting
for IDX refresh, and (iii) identify updates that exhibit a
stronger correlation with the metric anomaly. In addition, we
observed the effectiveness of RADig-X in detecting anomalies
not only in the case of IDX regressions but also in the case
of improvements. As a matter of fact, albeit they do not have
a negative impact, they are still of interest to the team.

The context of the tool concerns third-party applications
analysis (in both anomaly detection and software changes
analysis), therefore it is not possible to investigate in detail
which types of software modifications (refactoring, integration
or others) led to crashes and which code fragments have been
affected.

Observed deviation (%)

Sum Mean IDX Subscore
Regression Phase 236.25 % 236.34 % - 48.9 %
Improvement Phase 58.46 % 11.11 % + 69.37 %

TABLE VI: RADig-X practical usage case 2 results.

We also measured the global IDX since the adoption of
RADig-X, resulting in a 14.66% improvement. In addition,
the monitoring team remarked that the use of the system
automatically implies more focus on the monitored data,
leading to a greater sensitivity to any variation.

VII. THREATS TO VALIDITY

a) Construct validity: We evaluate the effectiveness of
each component of RADig-X independently from the other



ones. The interactions among the different RADig-X compo-
nents might affect the approach effectiveness. Unfortunately,
due to APM tool retention policies, we were unable to con-
duct a comprehensive end-to-end evaluation of the approach.
Nonetheless, in Section VI we report some of the benefits
of employing RADig-X in practical scenarios. We have repli-
cated the current practice used within the company through
an automated script. Although this script may not precisely
represent the monitoring team behavior in practice, it serves
as a valuable baseline for evaluating RADig-X.

The anomaly detection component of RADig-X has been
evaluated on eight distinct time series of runtime metrics. The
effectiveness of RADig-X may vary when applied to other
runtime metrics. Unfortunately, the selection of the time series
used in this evaluation has been constrained by the retention
policies of APM tool and the necessity of a ground-truth, i.e.,
anomalies manually labeled by domain experts.

b) Internal validity: We evaluate RADig-X using well-
established metrics, such as MAE and RMSE. Using different
evaluation metrics could impact the interpretations of the
results. RADig-X determines the presence of an anomaly based
on a specific threshold T . The outcomes of RADig-X may
vary if different threshold values are applied. To ensure a fair
comparison, we have based our comparison between RADig-X
and the baseline on the same threshold.

c) External validity: We use RADig-X within the context
of Micron in combination with a specific APM tool. However,
we designed RADig-X with a focus on generalizability, as we
aim to facilitate its application to other contexts. Indeed, if the
semantics of the data is the same as the one used in the Micron
context, then the effort to adapt this approach would be related
only to the data formatting. Of course, its effectiveness may
be affected by the context in which it is used.

VIII. RELATED WORK

Software Anomaly Detection. In recent years, researchers
have increasingly utilized machine learning techniques along-
side traditional statistical approaches (e.g., ARIMA models
[21], [22]) for software anomaly detection [23]–[28]. Among
the most commonly employed models are Recurrent Neural
Networks [25], [29]–[31], such as LSTM and GRU. For in-
stance, LSTM have been employed to predict failures in cloud
service systems [32], or spacecraft anomalies [24]. LSTM have
been also combined with other techniques such as Variational
Auto-Encoder (VAE) [33] and multimodal learning [34] to
perform this task. Other methods utilize other unsupervised
machine learning approaches to detect anomalies [35]–[37].
Chen et al. [38] use pattern sketching to detect anomalies
in online service system, a technique that provides better
result interpretability when compared black box approaches.
Most of the prior work apply anomaly detection to individual
(in-house) software applications. Our work, instead, involves
dealing with a large IT infrastructure that encompasses a
variety of third-party software applications spanned across
more 30,000 devices.

Software Changes. Software quality degradation may be
induced by software changes (such as bug fixes, refactor-
ing, functionality extension). For this reason, over the last
decade, researchers have been committed in devising tech-
niques to mitigate the impact of software changes. These
techniques can be preventive, i.e., before the changes are
deployed into production to evaluate potential risks [39]–[42],
or post-deployment [25], [43]–[45]. Our approach fits into
this last category. Existing approaches of this category are
based on examining variations on quality metrics before and
after deployment. For instance, Lumos [46] adopts an A/B
testing approach (similarly to our heuristic) while FUNNEL
[45] leverages singular spectrum transform (SST) algorithm.
Other approaches such as Gandalf [44] and SCWarn [25]
have been realized to take into account data monitored from
multiple sources, such logs and a variety of KPIs. Much of
these approaches are focused on analyzing software changes
related to a specific service or application. Our study, instead,
proposes an analysis on software changes related to third party
applications, considering the software change as a black box
event.

Root Cause Analysis. Root cause analysis (RCA) of
software systems has been extensively researched in a variety
of contexts. For instance, DeLag [47] automatically detects
deviations in the execution time of Remote Procedure Calls
(RPC) that are correlated with performance degradation, in
the context of service-based systems. In the same domain,
automated pattern detection has been widely investigated for
root cause analysis of performance issues and/or failures [48]–
[50]. In StackMine [51], pattern detection has been employed
to detect callstack patterns associated with performance issues.
Chen et al. [52] proposed a failure cause diagnosis approach
using decision trees trained over request traces in which there
are failures. RADig-X seeks to identify software changes that
are associated to significant digital experience regressions.

IX. CONCLUSION

In this work, we have introduced RADig-X, a novel approach
to enhance the diagnosis and root cause analysis of digital
experience issues. We have conducted an empirical evaluation
on real-world monitoring data gathered from a large company,
involving over 30,000 devices. The results have shown that
RADig-X can be effectively used to (i) detect anomalies in
runtime metrics, (ii) assess the relevance of anomalies with
respect to their impact on the global IDX, and (iii) identify
software updates that are likely culprits of anomalies. Since
its deployment, RADig-X has helped to identify problematic
software updates that have shown relevant impact on the digital
experience of Micron employees. As a future work, we intend
to broaden the assessment of RADig-X to incorporate other
types of runtime metrics, such as those related to software
performance. Furthermore, we plan to evolve RADig-X beyond
its current capabilities. In particular, we plan to shift towards
a multi-feature approach in the anomaly detection task, and to
include the capability of proactively identifying potential prob-



lems with software updates before they are widely deployed
across numerous digital devices.
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