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Abstract—Code optimization is the process of enhancing code
efficiency, while preserving its intended functionality. This process
often requires a deep understanding of the code execution behav-
ior at run-time to identify and address inefficiencies effectively.
Recent studies have shown that language models can play a
significant role in automating code optimization. However, these
models may have insufficient knowledge of how code execute at
run-time. To address this limitation, researchers have developed
strategies that integrate code execution information into language
models. These strategies have shown promise, enhancing the
effectiveness of language models in various software engineering
tasks. However, despite the close relationship between code execu-
tion behavior and efficiency, the specific impact of these strategies
on code optimization remains largely unexplored. This study
investigates how incorporating code execution information into
language models affects their ability to optimize code. Specifically,
we apply three different training strategies to incorporate four
code execution aspects — line executions, line coverage, branch
coverage, and variable states — into CodeT5+, a well-known
language model for code. Our results indicate that execution-
aware models provide limited benefits compared to the standard
CodeT5+ model in optimizing code.

Index Terms—Code Optimization, Deep Learning

I. INTRODUCTION

Performance is a critical quality attribute of modern soft-
ware systems [1]. Improving software performance involves
activities across various layers of the software stack, ranging
from architectural design [2] to compiler optimization [3].
Among these, source code optimization — the process of re-
fining code by selecting efficient data structures and algorithms
— stands out as a key approach for enhancing the efficiency
of software systems.

As of today, code optimization tasks largely rest on the
shoulders of developers. However, with the rising trend of
using AI to automate software engineering tasks [4]–[9], recent
studies have begun exploring the potential of language models
to automate code optimization [10]–[13]. In these studies,
language models are provided with a non-optimized version
of a code snippet (e.g., a function) and tasked with generat-
ing an optimized version that improves specific performance
properties, such as execution time.

While these efforts have demonstrated the significant poten-
tial of language models in automating code optimization [10]–
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[13], these models are typically trained on a “static” source
code representation and may therefore lack an understanding
of how code executes at run-time [14]–[16]. Recent studies
have shown that integrating these models with code execution
information can significantly enhance their effectiveness across
a variety of downstream software engineering tasks [15]–[18].
For instance, Ding et al. [18] proposed a pre-training strategy
to teach language models specific aspects of code execution,
such as branch coverage and variable states, demonstrating
improvements in tasks like clone retrieval and vulnerability
detection. Similarly, Ni et al. [15] introduced NExT, a method
that enables language models to inspect variable states of
executed code lines and reason about their execution behavior,
resulting in a higher fix rate for program repair tasks. Despite
these and other efforts [16], [17], [19]–[21], the impact of
execution-awareness in automated code optimization remains
largely unexplored.

Given the close relationship between run-time execution
behavior and code efficiency, this paper investigates how
teaching language models to understand code execution behav-
ior affects their effectiveness in optimizing code. Specifically,
we first train a CodeT5+ model [22] with training objectives
related to four code execution aspects, namely number of line
executions, line coverage, branch coverage, and variable states.
We then evaluate and compare the code speed-ups achieved
by these execution-aware models against those of the standard
CodeT5+ model. Our findings reveal that execution-aware
models do not outperform the traditional language model in
code optimization. On the contrary, they seem to be less
effective than the standard CodeT5+ model.

The contribution of this paper are as follows:
• A comprehensive evaluation of twelve execution-aware

language models, based on CodeT5+, for code optimiza-
tion. This evaluation encompasses four different code
execution aspects and three distinct strategies.

• A complementary analysis providing insights to guide
future research in automated code optimization.

• A replication package to reproduce our findings1.
Paper Structure: Section II provides background on

automated code optimization and execution-aware language
models for code. Section III describes our study design and
research questions. Section IV explains the experimental setup.

1https://github.com/SpencerLabAQ/exec-aware-code-opt

https://github.com/SpencerLabAQ/exec-aware-code-opt


Section V reports the results. Section VI presents a qualitative
analysis, discusses the results, and describes threats to validity.
Section VII concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Language Models for Code Optimization

Transformer-based language models are a category of deep
learning models that have driven significant advancements
in natural language processing. In recent years, studies have
demonstrated the ability of such models to effectively per-
form various software engineering tasks [4]–[8], [23]–[27].
Since code optimization involves generating a refinement of
a source code that improves efficiency, it can be directly
framed as a code-to-code transformation task (specifically,
from inefficient to efficient version). For example, Garg et al.
proposed DeepDev-PERF [13], a transformer-based model
pretrained on English and C# source code corpora, and further
specialized with performance-improving commits. Their work
shows that DeepDev-PERF can generate code changes that
lead to tangible performance optimizations to various open
source C# projects.

Shypula et al. proposed a dataset of performance-improving
code edits (PIE) [10], composed of slow-fast C++ program
pairs. They exploit this dataset to evaluate a variety of
techniques, including fine-tuning and prompting, for adapt-
ing well-known language models, such CodeLLama, GPT-3.5
and GPT-4, for code optimization. Their results show that
certain combinations of techniques and models can achieve
higher optimizations than human reference. Similarly, Chen
et al. [28] proposes SUPERSONIC, a smaller seq2seq model
targeting minor source code modifications for optimization.
SUPERSONIC is trained on C/C++ slow-fast program pairs
leveraging a diff-based input representation. Results show that
it outperforms larger language models, such as GPT-3.5-Turbo
and GPT-4, on code optimization while retaining significant
similarity with the original program. RAPGen [12] leverages
a pre-constructed knowledge-base to prompt language models
in zero-shot to generate code inefficiencies fix. Gao et al. [11]
modeled the optimization task with a search-based approach,
integrating language models with evolutionary search and
outperforming several baselines models such as CodeLlama,
Gemini and ChatGPT.

Although these studies have demonstrated the effectiveness
of language models in optimizing code, they tend overlook the
potential implications of integrating code execution informa-
tion into the model.

B. Execution-aware Language Models

Most existing language models for code focus on learning
static form of code text, however they may lack a semantic
understanding of how code execute at run-time [14], [15]. To
mitigate this issue, several approaches have been proposed to
integrate language models with code execution information.
For instance, Ding et al. proposed TRACED [18], an execution-
aware pre-training strategy to capture run-time execution as-
pects of code. This strategy pre-trains the language model

with the task objective of predicting variable states, and line
coverage, forcing the model to reason about code execution
behavior. They found that learning code execution behavior,
significantly improves the capabilities of language models in
both clone retrieval and vulnerability detection tasks.

Another example is SemCoder [16], an execution-aware
language model that leverages monologue reasoning to learn
about local execution effects of individual statements, overall
input/output behavior, thereby linking static code with code
execution behavior. SemCoder shows competitive effectiveness
with GPT-3.5-turbo on code generation and execution rea-
soning tasks, despite being significantly (6.7B parameters). A
similar approach, namely NExT, was recently proposed by Ni
et al. [15]. This method teaches the language models to inspect
the execution traces of programs (variable states of executed
lines) and reason about their run-time behavior through chain-
of-thought rationales. NExT considerably improves the fix rate
of a PaLM 2 model for program repair tasks.

Huang et al. [17] proposed FuzzPretrain, a method to ex-
plore run-time execution information of code revealed by their
test cases and embed it into the feature representations of code
as complements. FuzzPretrain yields significant improvements
on the code search task over its language model counterparts
trained with only static source code.

Previous research has studied the effectiveness of execution-
aware models across various software engineering tasks, such
as program repair [15], vulnerability detection [18], clone
retrieval [18], code generation [16], and code search [17].
However, despite the clear connection between runtime execu-
tion behavior and code efficiency, no prior work has directly
examined how incorporating code execution information into
language models influences their ability to optimize code. This
paper seeks to address this gap.

III. STUDY DESIGN

The goal of this study is to investigate how integrating
code execution information into language models impacts their
ability to optimize code. We analyze twelve execution-aware
models, derived from CodeT5+, that incorporate different
combinations of four code execution aspects and three training
strategies. Specifically, for each code execution aspect, we
create execution-aware models using three distinct training
strategies. We then evaluate the code optimizations provided
by these execution-aware models and compare them to those
produced by the standard CodeT5+ model.

In the following sub-sections, we describe the code execu-
tion aspects and training strategies investigated in this study,
as well as the research questions we aim to address.

A. Code Execution Aspects

1) Line Executions (LE): This aspect refers to how often a
specific line of source code is executed during runtime. Each
line of code is assigned a label indicating the number of times
it has been executed. This information provides understanding
on hotspots within the code, i.e., code sections that are
frequently executed and may benefit from optimization.
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Fig. 1: Overview of the proposed training strategies for
building execution-aware language models.

2) Line Coverage (LC): Line coverage identifies which
lines of source code are executed at least once during execu-
tion. This provides insights about which parts of source code
are covered after executing the program with a specific input,
and which one remain underutilized.

3) Branch Coverage (BC): This aspect is primarily de-
signed to determine the parts of the source code associated to
a branch. Given the execution of the program with a specific
input, each line of code can fall into one of three categories:
(i) it is part of a covered branch, (ii) it is part of an uncovered
branch, or (iii) it is not part of any branch.

4) Variable States (VS): This information focuses on how
the code execution changes the state of variables. For example,
some variables may control the program’s flow (e.g., counters
or boolean flags), while others store intermediate or final re-
sults to be returned. Understanding the state of these variables
at the end of execution provides insights into the code behavior
at runtime.

B. Training Strategies

We define three distinct training strategies, each applied to
a language model which has been already pre-trained on a
static representation of code text, specifically CodeT5+. Each
strategy is designed to teach the model a particular aspect of
code execution using a specific training methodology. Figure
1 presents a high-level overview of the stages involved in
each training strategy. In particular, we consider the following
strategies: (i) execution-aware pre-training (S1), (ii) execution-
aware pre-training combined with masked language modeling
(S2), and (iii) execution-aware fine-tuning (S3). In the follow-
ing, we provide a description of each training strategy, while

their instantiations to specific training datasets are detailed in
Section IV-A.

S1 — Execution-aware Pre-training + Fine-tuning: This
strategy involves two sequential training stages. In the first
stage, the model undergoes pre-training to predict aspects of
code execution based on specific input test cases. To deepen
the model understanding of runtime code execution, we train it
on multiple input cases to capture diverse execution behaviors
of the same code. We term this process execution-aware pre-
training. Specifically, the model learns to predict run-time
execution information without actually running the code (i.e.,
it is provided with a program and a specific input and it
must predict a specific execution aspect, like for example the
line coverage). This step is designed to teach the language
model how code executes at runtime. In the second stage, the
execution-aware model is fine-tuned for code optimization.
This is framed as a sequence-to-sequence downstream task,
where the input is a slower version of a program, and the
output is an optimized, faster version. Importantly, the op-
timization process aims to preserve the program’s intended
functionality; that is, the optimized program must produce the
expected output.

S2 — Execution-aware Pre-training & Masked Language
Modeling + Fine-tuning: Ding et al. [18] demonstrated that
combining execution-aware pre-training with masked language
modeling (MLM) can enhance model effectiveness across mul-
tiple software engineering tasks. Building on this approach,
this strategy combines an execution-aware objective (as the
one described for S1) with an MLM objective during pre-
training. The MLM objective involves randomly masking 15%
of tokens in the input sequence and training the model to
predict the masked tokens based on the surrounding context.
Following the pre-training stage, as in the S1 strategy, the
model is fine-tuned for code optimization.

S3 — Execution-aware Fine-tuning: This strategy does not
involve a pre-training stage. Instead, code execution informa-
tion is incorporated directly into the model input (i.e., the slow
version of the code) during fine-tuning. This information is
added either line-by-line (for LE, LC, and BC) or at the end
of the code (for V S). Unlike the first two strategies, this one
assumes the availability of an execution trace for the input
code. Since code execution information is typically tied to a
specific input test case, we adopt different methods depending
on the aspect of code execution being considered. For Line
Executions (LE), we use the maximum number of executions
recorded for each line across all execution traces. This choice
reflects the assumption that these maximum values are more
impactful on execution time. For the other code execution
aspects, we select a single trace corresponding to a random
test case to annotate the slow code.

C. Evaluation Metrics

To evaluate the model effectiveness in code optimization,
we use three evaluation metrics introduced in prior work [10]:



• Correct (%): The percentage of generated programs that
successfully execute and produce the expected output for
all available test cases.

• Speedup: The absolute improvement in terms of execution
time. It is defined as Speedup = TI

TG
, where TI and TG

denote the execution times of the input and generated
programs, respectively. In line with previous work [10],
we set Speedup = 1 when the generated programs are
either incorrect or slower than the input program.

• Percent Optimized (%Opt): The percentage of generated
code that is both correct and faster across the entire
testing set. A generated program is considered faster
if it achieves a speed improvement of at least 10%,
corresponding to a Speedup of at least 1.1x.

D. Research Questions

This study aims to answer the following research questions:

RQ1 How does learning line executions impact the effective-
ness of language models for code optimization? Several
code optimizations aim to reduce the frequency of line
executions (e.g., loop optimization [29]). This research
question investigates the impact of teaching a model
to understand line execution behavior on its ability to
optimize code.

RQ2 How does learning line coverage impact the effective-
ness of language models for code optimization? Here,
we study how incorporating line coverage information
into the language model affects its effectiveness in code
optimization.

RQ3 How does learning branch coverage impact the ef-
fectiveness of language models for code optimization?
Branch coverage information gives indications of how
the conditional control flow statements impacts the code
execution at run-time. This information can be crucial to
identify potential optimization opportunities [30]. In this
research question, we evaluate how learning such infor-
mation influences the model effectiveness in optimizing
code.

RQ4 How does learning variable states impact the effective-
ness of language models for code optimization? Having
an understanding of the types and values of variables
may provide meaningful insights into code execution
behaviors, e.g., variables elimination, type optimization
and how the instructions reflects on the final values
of used variables. Here we analyze whether teaching
variable states to language models could enhance their
ability to optimize code.

To answer these RQs, we conducted an empirical study to
evaluate the effectiveness of twelve execution-aware language
models for code optimization. For each code execution as-
pect (i.e., RQ), we developed three execution-aware models
using the training strategies outlined in Section III-B. We
then evaluated the effectiveness of these models using the
metrics defined in Section III-C and compared to the standard
CodeT5+ model.

IV. EXPERIMENTAL SETUP

In this section, we outline a detailed description of our
experimental procedure, including the datasets construction,
training procedure, baselines and models evaluation.

A. Datasets Construction

Strategies S1 and S2 require an execution-aware pre-training
dataset as well as a fine-tuning dataset, whereas the strategy
S3 only needs an execution-aware fine-tuning dataset. We start
by describing the data related to the code optimization task
and execution information, followed by an explanation of how
this data is transformed into datasets tailored to each specific
training strategy.

1) Code optimization: We train language models for code
optimization using the Performance Improving Edits (PIE)
dataset [10], which consists of C++ slow-fast program pairs
derived from from IBM CodeNet [31]. CodeNet is a large-scale
dataset of programs, with each program representing a solution
to a specific coding problem. It includes multiple programs
for each coding problem, which may be authored either by
the same developer or by different developers. Additionally, it
provides test cases that can be used to evaluate the correctness
of each program (based on the problem specifications) and
measure its execution time. The PIE dataset involve 77k ‘slow-
fast’ program pairs, where both programs in each pair aim to
solve the same coding problem. PIE is already provided in
a pre-split format consisting of train/validation/test subsets,
ensuring that programs belonging to each problem only ap-
pear in one of those subsets. Additionally, we apply some
preprocessing steps to canonicalize the code and remove any
subjective elements in comments and coding style, as outlined
in previous work [28]. We use the gcc preprocessor to remove
comments and clang-format to format programs based on the
LLVM coding style.

2) Execution traces: To obtain code execution informa-
tion, we use the gdb2 debugger to trace program execution,
following a method similar to that used in [18]. To prevent
prolonged computations, the tracing duration was limited to
500 seconds. The execution tracing procedure may fail if it
takes too long or causes an invalid trace due to an unexpected
execution interruption (e.g., program crash). The output of the
tracing procedure consists of program execution traces that
document the complete execution history of each program run.
Specifically, such execution traces list all the executed lines,
alongside with the name, type, and value of the corresponding
program variables at each step of the program execution. We
then preprocess these traces to extract execution information
needed for our study, such as the execution frequency of each
line of code and the state of variables at the end of program
execution. For sake of clarity, we depict a sample execution
trace referring to a dummy program in Figure 2. As illustrated,
the trace displays the name, type and value of each variable for
every line of code that is run, represented as blocks. The last

2https://sourceware.org/gdb/
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Variable States
name type value
x int 5

y int 3

z int 8

L2 {

- int x, value: ?

- int y, value: ?

- int z, value: ?

}


...

Execution Trace
Quantized Variable States

name type value
x basic_type POSITIVE-REG

y basic_type POSITIVE-REG

z basic_type POSITIVE-REG

L3 {

- int x, value: 5

- int y, value: ?

- int z, value: ?

}


L6 {

- int x, value: 5

- int y, value: 3

- int z, value: 8

}


Fig. 2: The figure presents the execution trace corresponding to the outlined sample function, namely dummy_sum(). We
use the question mark symbol (?) to show that a variable does not yet have an assigned value. Additionally, it also depict the

variable states information and the associated quantized values.

block in the trace (highlighted in green in the figure) contains
the final variable information we use for the variables state
execution aspect.

3) Datasets: For fine-tuning the model for code optimiza-
tion, we directly rely on the PIE dataset for both the S1

and S2 strategies. Conversely, in execution-aware fine-tuning
(i.e., S3), the dataset must be adapted to incorporate execution
information into the slow input program. To build the S3

execution-aware fine-tuning dataset, we performed the tracing
procedure over all the programs included in the ‘slow’ column
of PIE dataset. Note that, a ‘slow’ program can appear multiple
times in the PIE training dataset if associated to multiple
faster versions. Specifically, among the 21,713 distinct ‘slow’
programs contained in the PIE training set, 9,145 programs
were successfully traced. Similarly, from 978 ‘slow’ programs
contained in the test set, 466 were traced successfully. This
resulted in a total of 31,585 slow-fast training pairs and 466
instances for the testing set.

Differently, to construct the execution-aware pre-training
dataset (for S1 and S2), we initially excluded all the C++
CodeNet programs appearing in either the ‘slow’ or ‘fast’
columns of the entire PIE dataset (43,606 programs). This fil-
ter prevents duplicate samples present in both the pre-training
and fine-tuning datasets. Additionally, for each coding problem
in CodeNet, we randomly select up to 150 program-test cases
pairs, and we collect their corresponding execution traces. This
approach ensures traces collection in a reasonable timeframe,
as CodeNet comprises more than 8 millions of C++ programs.
Indeed, the tracing collection procedure resulted in 119,764
execution traces for building the execution-aware pre-training
dataset, involving 87,705 distinct programs. It is important to
note that the same program may appear multiple times in this
dataset if the corresponding coding problem involves multiples
test cases, as each test case generates distinct execution traces.

B. Quantization Strategy

Language models may face challenges in learning code exe-
cution information, as they are primarily continuous numerical
values [18]. Let us consider the example of line execution,
where each line is associated with the number of times it
has been executed for a specific input. This value can be any
integer greater than or equal to zero. Thus, it may be challeng-
ing for the model to learn the underlying patterns behind this
code execution aspect. To address this, as proposed in prior

work [18], we define a set of special tokens for each execution
aspect to quantize the concrete execution information. For line
executions, we performed a quantization of concrete values
based on specific ranges, resulting in four unique tokens; <e>:
1 execution, <e+>: 2− 5 executions, <E>: 6− 20 executions,
<E+>: 21+ executions. Lines that are not executed are not
marked with any token. The majority of program lines were
observed to have zero or one single execution, representing
over 80% of all analyzed lines. In light of this, we allocated a
dedicated token (<e>) for representing a single execution case.
We determined the other thresholds by studying how often
lines of code were executed more than once. In particular,
we set the higher threshold using the outlier detection rule
T = Q3 + 2.5 * IQR, and subsequently divided the remaining
values into two groups, using the median value as the dividing
criterion. The calculated values for median and T were 4 and
23, which we rounded to 5 and 20. To identify the executed
lines in the line coverage aspect, we only re-use the <e> token;
uncovered lines remain unlabeled, as for the LE aspect. For
learning branch coverage we use two tokens, namely <BC>
and <BNC>, to indicate that a line is part of a branch that is
covered or not covered, respectively. In this case, lines that do
not belong to any branch are left unlabeled. Regarding variable
states, we adapt the quantized representation introduced in
TRACED [18] to represent C++ variables, using their name,
type and value. In Figure 2, we report the variable states
quantization step for a dummy example. As depicted, the int
became basic_type, while the concrete values have been
converted into POSITIVE-REG. We outline all details related
to the quantization strategy for each execution aspect in our
replication package description.

In Table I, we provide a comprehensive example of the
execution information that we feed into the language models.
In the first column, we report the traced program alongside
with a test case (i.e., program input) and the output obtained
from its execution. The other columns outline the special
tokens computed for each execution aspect. As show in the
table, the variable states information refers the entire code
execution, whereas the other aspects correspond to line-by-
line execution information.

C. Training Procedure

We exploit a Text-To-Text Transfer Transformer (T5) model,
namely CodeT5+ [22], which is specifically pre-trained on



TABLE I: Sample C++ source code aligned with the corrisponding execution information.

C++ Source Code Line
Exec.

Line
Coverage

Branch
Coverage

Variable States
Var. Name Var. Type Quantized Val.

Test Case: keyofscience
#include<iostream> - - - k class OTHER
#include<string> - - - S class OTHER
using namespace std; - - - s basic_type POSITIVE-REG
int main(){ <e> <e> - f basic_type POSITIVE-REG

int s=0,f=0; <e> <e> - i basic_type POSITIVE-REG
string S,k="keyence"; <e+> <e> -
cin>>S; <e> <e> -
for(int i=0;i<S.length();i++){ <e+> <e> <BC>

if(S[i]==k[i])s++; <e+> <e> <BC>
else break; <e> <e> <BC>

} - - -
for(int i=0;i<S.length();i++){ <e+> <e> <BC>

if(S[S.length()-1-i]==k[6-i])f++; <e+> <e> <BC>
else break; <e> <e> <BC>

} - - -
if(s+f>=7)cout<<"YES"<<endl; <e> <e> <BC>
else cout<<"NO"<<endl; - - <BNC>
return 0; <e> <e> -

} <e> <e> -

Output: YES

TABLE II: Overview of the total number of instances in the
datasets after applying the maximum token limits filter. Note
that different execution aspects can lead to dataset sizes, as

the number of tokens may be different.

Dataset BL LE LC BC VS

Execution-aware Pre-training - 96,308 96,463 96,463 96,468

Fine-tuning 52,471 52,471
Execution-aware Fine-tuning 28,753 28,654 28,244 28,654 28,034

source code and widely adopted in software engineering
literature [32]–[35]. With regard to the available computational
resources, we selected the CodeT5+ model with a parameter
size of 220M. We ran all the experiments using the Hug-
gingFace Transformers library. For all the tasks, we train the
model for 1 epoch, with a batch size of 16 and a learning rate
of 1e−5. All experiments were conducted using the default
AdamW optimizer. The fine-tuning script included in the
official CodeT5+ release specifies the maximum token limits
for the source and target inputs as 320 and 128, respectively3.
Since the majority of our instances exceeds these threshold,
we decided to increase both the source and target limits to 512
tokens. In Table II, we report the overall instances for each
dataset resulting from filtering out the training samples with
a number of tokens greater than 512.

In the following, we outline our implementation of each
training strategy.

1) Strategy S1: Concerning the S1 execution-aware pre-
training, the language model reads a program code and
an associated test case (i.e., program input) and gener-
ates the corresponding execution information. Let us de-
fine the set of the program lines as L = {l1,...,ln} and

3https://github.com/salesforce/CodeT5/tree/main/CodeT5%2B

the test case as input; the model prompt is then built as
IPT S1

= {classify: + input + <SEP> + l1,...,ln}. The
corresponding target sequence contains the execution in-
formation tokens joined together, separated by the “\n”
character. Concerning line-wise execution information (i.e.,
LE, LC and BC), we can define the set of execu-
tion information tokens corresponding to the program L as
E = {e1,...,en} and accordingly build the target sequence
as OPT S1 = {e1,...,en}. For instance, assuming to deal
with line executions data, the output sequence corresponding
to the example reported in Table I would be encoded as
”\n\n\n<e>\n<e>\n<e+>\n<e>...<e>\n<e>”. For the
variable states, the target sequence consists of a list of inline
code comments detailing the name, type, and value of each
program variable. For instance, the code reported in Table
I would generate five comments to append to the code, in
the following way: ”...// k class OTHER\n...\ni
basic_type POSITIVE-REG”. IPT S1

and OPT S1
are

fed into the language model as source and target sequences in
a sequence-to-sequence supervised learning setting.

For the S1 fine-tuning, the code optimization task is mod-
eled as a sequence-to-sequence downstream tasks, in which
the model reads the ‘slow’ code and generates the optimized
version. Assuming to have a slow program composed of n
lines (S = {s1,...,sn}) and a faster version composed of m
lines (F = {f1,...,fm}), the input sequence for the fine-tuning
task is formulated as IFT S1 = {optimize: + s1,...,sn}.
The target sequence simply consists of the set of lines of
the optimized version joined together: OFT S1

= {f1,...,fm}.
The ‘classify:’ and ‘optimize:’ prefixes are utilized
to assist the language model in distinguishing between the
specified tasks.

2) Strategy S2: This strategy is similar to strategy S1, but
it integrates the masked language modeling (MLM) objective

https://github.com/salesforce/CodeT5/tree/main/CodeT5%2B


to the execution-aware pre-training process. The model alter-
nates the batches of the execution-aware pre-training dataset
for performing both execution-aware and MLM pre-training
objectives, aligned with prior research [36]. To distinguish be-
tween the two tasks, we use the ‘mlm:’ input prefix for MLM
batches instances. Formally, let M = {m1,...,mk} representing
the set of k tokens encoding the input program, including those
that are masked. The input sequence for MLM is then defined
as IPT S2 = {mlm: + m1,...,mk}, with the output being the
sequence of real tokens corresponding to the masked ones.
The instances contained in the batches that are not used
for MLM are handled identically to S1. With this feeding
process, we aim to teach the language models to generate
both execution and MLM labels. The fine-tuning stage is
performed identically to S1, meaning that IFT S2 = IFT S1

and OFT S2
= OFT S1

.
3) Strategy S3: The strategy S3 relies to a direct execution-

aware fine-tuning process, in which the tokens related to
execution information are directly incorporated within the
slow code, by using code comments. For instance, the 8th
line of code in Table I would be converted into the line
for(int i=0;i<S.length();i++){ // <e+> in case of line
executions. For line executions, line coverage and branch
coverage aspects, the execution information is generated for
each line of code. Then, formalizing the set of source code
lines annotated with executions tokens as SE = {se1,...,sen},
the input sequence (IFT S3 ) is constituted by the flattened
version of SE . Differently, for the variable states aspect we
generate inline comments for each variable, similarly to S1,
and append them to the ’slow’ program. The target sequence
OFT S3

corresponds to the optimized version of the code, as
for the other strategies.

D. Baselines

We compare each execution-aware language model against
the plain CodeT5+ model directly fine-tuned for the code
optimization task (i.e., without injecting any execution infor-
mation).

In that, we define the following baseline models:
• Baseline for S1-S2 (BLS12 ): We train this baseline using

the fine-tuning dataset outlined in Table II, involving
52,471 overall instances. Note that the dataset used for
training the baseline is identical to the dataset used for
fine-tuning the execution-aware models with S1 and S2.

• Baseline for S3 (BLS3 ): To guarantee a fair comparison
regarding strategy S3, we restrict the analysis to the sub-
set of programs that were successfully traced, applying
the same subset for training the baseline, leading to a
total of 28,753 instances.

E. Models Evaluation

We evaluate the effectiveness of each language model using
the PIE test set [10]. Specifically, we prompt each model
to generate an optimized version of each ‘slow’ program
contained in the test set. Subsequently, the ‘slow’ programs
and the generated programs are compiled and simulated using

the available CodeNet test cases on the gem5 simulator [37].
Through this process, we assess the correctness of the gener-
ated programs and measure their execution times, following
the methodology outlined in previous work [10]. The Speedup
for an individual generated program is calculated by averaging
the speedups obtained across all the test cases.

The total amount of time required for conducting all the
experiments — including execution traces collection, model
pre-training, fine-tuning and evaluation — is approximately
3 weeks. The traces collection and evaluation procedures
were conducted on a linux server equipped with 40 Intel(R)
Xeon(R) 2.30GHz CPUs and 78Gb of RAM, while the models
training and inference have been performed over a CentOS
HPC cluster equipped with 32 Intel(R) Xeon(R) Gold 6140M
CPUs and two Nvidia A100 and A30 GPUs.

V. RESULTS

Our evaluation follows a common methodology across all
the research questions. For each execution-aware and baseline
model, we first generate the optimized code and then compute
the evaluation metrics defined in Section III-C. Table III
presents the results for the twelve execution-aware models
and the two baselines. For the Speedup metric, we report
the mean Speedup across all the programs of the test set.
The first column of the table specifies the execution-aware
or baseline model being evaluated. For instance, LES2

de-
notes the execution-aware model trained with line executions
information (LE), using the strategy S2. BLS12

indicates the
baseline model for strategies S1 and S2, while BLS3 denotes
the baseline model for S3.

Additionally, we assess the statistical significance of the dif-
ferences between the speedup provided by the execution-aware
model and baseline model using Wilcoxon’s signed-rank test
[38], and report two measures of effect size: Vargha-Delaney
Â12 [39] and the matched pairs rank biserial correlation r
[40]. In this context, the Â12 indicates the proportions of pairs
where the speedup is higher than the baseline. An Â12 > 0.5
indicates that a particular execution-aware model generates
more efficient source code than the corresponding baseline.
The matched pairs rank biserial correlation r represents the
difference between the proportion of favorable and unfavorable
evidence. With regard to our work, favorable evidence is rep-
resented by a higher speedup for the execution-aware strategy,
meaning that an r > 0 is denoting that the execution-aware
model performs better than the baseline. Results from the
comparison employing the Wilcoxon’s signed-rank test, along
with effect sizes, are reported in Table IV. In the following,
we discuss the achieved results by research questions.

A. RQ1: How does learning line executions impact the effec-
tiveness of language models for code optimization?

By observing Table III, we find that both LES1
and LES2

models perform generally worse than the BLS12
baseline

across all the evaluation metrics. Concerning the correctness of
the generated code, we observe lower percentages compared
to the baseline, with 12.36% correct programs for LES1



TABLE III: Correctness, Speedup and %Opt scores achieved by each baseline and proposed training strategy in performing
code optimization of C++ programs. Scenarios that do not include pre-training have been reported in the bottom part of the
table for a better understanding. For both the double-staged and single-staged strategies, the highest number in each column
is bolded and the second-highest is underscored.

Model Execution Aspect Training Strategy Evaluation Metrics
Pre-training Fine-tuning Correct Speedup %Opt

BLS12
- - Code optimization 18.75% 1.79 7.68%

LES1 Line Executions
Execution-aware Code optimization 12.36% 1.52 5.73%

LES2
Execution-aware + MLM Code optimization 11.97% 1.54 5.6%

LCS1 Line Coverage
Execution-aware Code optimization 14.84% 1.7 6.9%

LCS2
Execution-aware + MLM Code optimization 14.45% 1.76 7.55%

BCS1 Branch Coverage
Execution-aware Code optimization 13.93% 1.67 7.03%

BCS2
Execution-aware + MLM Code optimization 13.15% 1.55 5.73%

V SS1 Variable States
Execution-aware Code optimization 15.49% 1.69 7.29%

V SS2
Execution-aware + MLM Code optimization 14.97% 1.65 6.64%

BLS3
- - Code optimization 12.06% 2.09 9.22%

LES3
Line Executions - Execution-aware code optimization 12.71% 2.11 9.35%

LCS3
Line Coverage - Execution-aware code optimization 9.97% 1.67 5.84%

BCS3
Branch Coverage - Execution-aware code optimization 8.65% 1.64 5.76%

V SS3
Variable States - Execution-aware code optimization 11.55% 1.96 8.35%

TABLE IV: Comparison of speedups achieved by
execution-aware models vs. baselines, evaluated using
Wilcoxon test, Vargha-Delaney Â12, and rank biserial

correlation (r).

Exec-aware vs. Baseline p-value Â12 r

LES1
vs. BLS12

<0.05 0.446 (N) -0.643
LES2

vs. BLS12 <0.05 0.467 (N) -0.399
LES3

vs. BLS3
0.064 - -

LCS1
vs. BLS12

<0.05 0.451 (N) -0.633
LCS2

vs. BLS12
<0.05 0.455 (N) -0.515

LCS3
vs. BLS3

<0.05 0.471 (N) -0.416

BCS1
vs. BLS12

<0.05 0.452 (N) -0.536
BCS2

vs. BLS12
<0.05 0.447 (N) -0.61

BCS3
vs. BLS3

<0.05 0.47 (N) -0.503

V SS1
vs. BLS12

0.069 - -
V SS2

vs. BLS12
0.075 - -

V SS3
vs. BLS3

<0.05 0.487 (N) -0.449

and 11,97% for LES2 , versus a correctness of 18.75% for
BLS12 . We also observe that execution-aware pre-training
works slightly better for correctness when combined with
masked language modeling (i.e., LES2

). We find that the
speedup achieved by the code generated by execution-aware
models (1.52x and 1.54x for LES1

and LES2
, respectively) is

not as good as the one reached by the baseline (1,79x). The
%Opt values confirm the same trend observed for the other
two metrics, with lower percentages of optimized programs
for the execution-aware models.

Contrariwise, we find that execution-aware fine-tuning
(LES3

) works slightly better than its baseline BLS3
across

all the evaluation metrics. Particularly, LES3
reports a higher

number of correct programs (12.71% vs. 12.06%), a high-
est speedup (2.11x vs. 2.09x), and a higher percentage of

optimized programs (9.35% vs. 9.22). Since these improve-
ments appear marginal, we further investigated the statistical
significance of difference between the speedups provided by
LES3 versus those of BLS3 . Table IV shows the results of
the Wilcoxon test, which suggest no statistical difference for
the speedup, i.e., p > 0.05.

Answer to RQ1: Teaching line execution behavior to the
language model does not enhance its code optimization
capabilities. Execution-aware fine-tuning shows a slight
improvement, but without statistical significance.

B. RQ2: How does learning line coverage impact the effec-
tiveness of language models for code optimization?

Results for line coverage reveal a trend similar to that
observed in RQ1, with baselines outperforming all three
execution-aware models. When comparing LCS1

and LCS2
,

we observe an increase in speedup and %Opt values when the
MLM is combined with execution-aware pre-training (1.76x
vs. 1.7x for speedup, and 7.55x vs. 6.9x for %Opt), despite a
slight reduction in correctness (14.45% vs. 14.84%).

By observing Table III, we notice that, compared to other
execution-aware models based on the strategies S1 and S2,
line coverage demonstrates the highest effectiveness in terms
of speedup and the percentage of optimized programs. This
underlines that the effectiveness of execution-aware training
strategies are closely related to the specific execution aspect
used to feed the model. For the execution-aware fine-tuning
strategy LCS3 , we observe a similar trend, showing lower
effectiveness compared to the baseline BLS3

, e.g., speedup
of 1.67x vs. 2.11x.

Wilcoxon’s test indicates statistically significant differences
for all comparisons between execution-aware models and



baselines (p<0.05), with a negligible disadvantage for all
execution-aware models in terms of effect size (Â12 <0.5).

Answer to RQ2: Learning line coverage does not
improve the model effectiveness in optimizing code.
Execution-aware models perform worse than baseline
models across all metrics.

C. RQ3: How does learning branch coverage impact the
effectiveness of language models for code optimization?

As shown in Table III, execution-aware models consis-
tently underperform compared to their respective baselines
across all evaluation metrics. Specifically, we observe reduced
correctness, with values of 13.93%, 13.15%, and 8.65% for
BCS1 , BCS2 , and BCS3 , respectively. Regarding optimization
metrics, execution-aware models also lag behind the baselines,
achieving speed-ups of up to 1.67x (compared to 1.79x for
BLS12

and 2.09x for BLS3
) and %Opt values of 7.03% (vs.

7.68% for BLS12
and 9.22% for BLS3

).
When focusing exclusively on execution-aware fine-tuning,

BCS3 exhibits worse effectiveness across all evaluation met-
rics compared to the baseline BLS3 .

Answer to RQ3: The integration of branch coverage
information into language models reduces both correct-
ness and optimization metrics across the execution-aware
training strategies.

D. RQ4: How does learning variable states impact the effec-
tiveness of language models for code optimization?

The results for variable states in Table III indicate a degra-
dation in all evaluation metrics when employing any of the
considered execution-aware strategies. Specifically, correct-
ness decreases on average from 18.75% for the baseline BLS12

to 15.49% for the execution-aware model V SS1
and further

to 14.97% for the V SS2
model. Regarding execution-aware

fine-tuning, we observe a similar decline in correctness, from
12.06% (BLS12 ) to 11.55% (V SS3 ). Speedup and %Opt also
follow a similar downward trend compared to the baselines.

Answer to RQ4: Learning variable states in language
models does not enhance the effectiveness of code opti-
mization. On the contrary, we observe reduced correctness
and fewer optimizations in all execution-aware models.

VI. DISCUSSION

We conduct a complementary analysis to better understand
the results of our study and to identify potential insights for
future research on execution-aware code optimization.

A. Correctness analysis

Our evaluation reveals the limited capability of execution-
aware models to produce correct code, i.e., code that success-
fully passes all test cases. To better understand this limitation,
we delve deeper into the reasons behind the lack of correct-
ness. In particular, we analyze the proportions of generated
programs that: (i) exhibit well-formed syntax (i.e.,, the code

TABLE V: Percentages of programs that successfully
compile, execute, and produce correct outputs.

Model Compiled Executed Correct

BLS12
78.65% 76.95% 18.75%

LES1
81.25% 78.65% 12.36%

LES2
80.47% 77.21% 11.97%

LCS1
85.68% 82.94% 14.84%

LCS2
74.48% 72.53% 14.45%

BCS1
80.08% 77.08% 13.93%

BCS2
89.19% 86.72% 13.15%

V SS1
85.03% 82.29% 15.49%

V SS2
85.68% 80.99% 14.97%

BLS3
89.83% 88.65% 12.06%

LES3
86.81% 84.65% 12.71%

LCS3
86.13% 84.18% 9.97%

BCS3
85.10% 84.38% 8.65%

V SS3
86.73% 84.77% 11.55%

successfully compiles); (ii) do not result in runtime errors (i.e.,,
the code successfully executes); and (iii) produce the expected
output (i.e.,, the code passes all test cases)

Table V presents the percentages of programs that success-
fully compile (Compiled), execute without errors (Executed),
and produce the expected output (Correct). We observe that
execution-aware models exhibit comparable, and sometimes
superior, effectiveness in generating programs that success-
fully compile and execute. Specifically, when considering
execution-aware pre-training strategies (S1 and S2), these
models outperform the baseline BLS12 in generating programs
that compile and execute successfully. For example, LES1 ,
LCS1

, BCS2
, and V SS2

generate programs that successfully
compile in 81.25%, 85.68%, 89.19%, and 85.68% of cases,
respectively, compared to 78.65% for BLS12

. Similarly, LES1
,

LCS1 , BCS2 , and V SS1 generate programs that success-
fully execute in 78.65%, 82.94%, 86.72%, and 82.29% of
cases, respectively, compared to 76.95% for BLS12

. However,
when considering the correctness of the generated programs,
we observe a notable drop in effectiveness for execution-
aware models. Models using pre-training strategies S1 and S2

achieve a correctness of up to 15.49%, whereas the baseline
BLS12 achieves a correctness of 18.75%. These results suggest
that while execution-aware models generally perform well in
generating well-formed code that successfully executes, they
may be limited in their semantic understanding of the intended
functionality (i.e., correctness). This finding is somewhat coun-
terintuitive, as execution-aware training strategies are typically
designed to enhance language models’ semantic understanding
of code [15], [16], [18]. Nevertheless, in light of these findings,
we encourage future research on code optimization to focus on
improving the correctness of programs generated by execution-
aware language models. This could involve exploring addi-
tional aspects of code execution or developing alternative,
more effective training strategies.



TABLE VI: Speedup statistics considering only (i) correct
programs and (ii) optimized programs.

Model
Speedup

Correct Programs Optimized Programs
Instances Mean Instances Mean

BLS12
144 5.2x 141 5.29x

LES1
95 5.2x 91 5.39x

LCS1
114 5.71x 60 9.96x

BCS1
107 5.83x 63 9.21x

V SS1
119 5.44x 111 5.76x

LES2
92 5.49x 90 5.58x

LCS2
111 6.22x 66 9.79x

BCS2
101 5.21x 55 8.72x

V SS2
115 5.37x 109 5.61x

BLS3
51 10.12x 50 10.3x

LES3
53 9.76x 47 10.87x

LCS3
41 7.76x 26 11.67x

BCS3
36 8.4x 26 11.24x

V SS3
47 9.29x 40 10.74x

B. Speedup analysis

We assess the average speedup across the entire set of
generated code, accounting for both incorrect and slower
programs. In line with prior research [10], we assign a speedup
= 1 in such cases. To better understand the speedup provided
by execution-aware models, here we focus on analyzing only
the correct programs generated by the models, as well as
the programs that achieve an non-negligible optimization of
execution time (greater than 1%). Table VI presents the
mean speedup achieved by each model, calculated exclusively
for programs that produce the expected outputs (Correct
Programs) and for those that optimize the input program
(Optimized Programs). Additionally, we report the number of
program instances considered in each case. Execution-aware
models deliver comparable or even superior speedup compared
to baseline models when considering only correct programs.
This trend is more evident in models utilizing execution-aware
pre-training (i.e., S1 and S2): BCS1 and LCS2 achieve mean
speedups of 5.83x and 6.22x, respectively, whereas the base-
line BCS12

achieves a speedup of 5.2x. Furthermore, when
focusing on optimized programs, we observe that execution-
aware models achieve significantly higher speedups compared
to baseline models. For instance, LCS1 achieves a speedup
of 9.96x, while the baseline BLS12 5.29x. Similarly, LCS3

achieves a speedup of 11.67x, compared to 10.3x for the
baseline BLS3

. These findings indicate that execution-aware
models have the potential to deliver significant performance
improvements when they successfully generate correct or
optimized programs.

C. Threats to Validity

1) Construct validity: Considering different execution as-
pects and quantization criteria could produce results that differ
from those presented in this study. Nevertheless, we focused
on execution aspects that have been successfully employed
in prior work [18]. Using alternative training strategies to

learn code execution information or larger language models
may yield different outcomes. Still, we evaluated a total of
twelve execution-aware models by employing three distinct
training strategies, and four execution aspects. Additionally,
we employed CodeT5+, a language model widely adopted in
the software engineering literature [32]–[35].

2) Internal validity: The choice of the language model
hyperparameters plays a key role in determining the model
effectiveness. We try to mitigate possible biases by adopt-
ing the default parameters of the CodeT5+ release package.
However, choosing different hyperparameters may lead to
different results. Measuring program execution time typically
involves a certain degree of variability [41]. To mitigate this
risk and improve the scalability of our experiments, similar
to previous work [10], we rely on a deterministic simulator,
namely gem5, to measure program execution time. However,
executing programs on concrete hardware enviroments may
yield different results. In addition, the reliability of our per-
formance benchmarking is significantly affected by the choice
of the test cases, which we directly inherit from CodeNet.

3) External validity: Our evaluation is based on C++
programs from CodeNet, which primarily consist of self-
contained programs to solve specific coding problems. In
addition, a random sampling was considered during dataset
construction. The findings this study, they may not generalize
to programs written in other programming languages or to
more complex software systems involving multiple modules,
third-party libraries, or intricate interdependencies.

VII. CONCLUSION

We investigate the effectiveness of execution-aware lan-
guage models in code optimization. We evaluate four execu-
tion aspects and three training strategies to teach a CodeT5+
how code executes at runtime. Our findings reveal that learning
code execution behavior does not enhance the model’s ability
to optimize code. A significant weakness of execution-aware
models is their limited capacity to generate semantically cor-
rect code, even though they often produce syntactically correct
programs. We encourage future research to explore additional
code execution aspects, leverage other (larger) language mod-
els, and experiment with alternative training strategies. This
research objective informs and drives our future agenda.
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